备考练习2022年唐山迁安市中考数学一模试题(含答案详解).docx

上传人:知****量 文档编号:28173976 上传时间:2022-07-26 格式:DOCX 页数:33 大小:1.34MB
返回 下载 相关 举报
备考练习2022年唐山迁安市中考数学一模试题(含答案详解).docx_第1页
第1页 / 共33页
备考练习2022年唐山迁安市中考数学一模试题(含答案详解).docx_第2页
第2页 / 共33页
点击查看更多>>
资源描述

《备考练习2022年唐山迁安市中考数学一模试题(含答案详解).docx》由会员分享,可在线阅读,更多相关《备考练习2022年唐山迁安市中考数学一模试题(含答案详解).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年唐山迁安市中考数学一模试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点B和点C是对应顶点,记,当时,与之间的数量关系为( )ABCD2

2、、已知关于x的分式方程=1的解是负数,则m的取值范围是()Am3Bm3且m2Cm3Dm3且m23、如图,三角形ABC绕点O顺时针旋转后得到三角形,则下列说法中错误的是( )ABCD4、下列运算中,正确的是( )ABCD5、方程的解为( )ABCD无解6、有下列四种说法:半径确定了,圆就确定了;直径是弦;弦是直径;半圆是弧,但弧不一定是半圆其中,错误的说法有()A1种B2种C3种D4种7、如果,且,那么的值一定是( ) A正数B负数C0D不确定8、在下列选项的四个几何体中,与其他类型不同的是( ) 线 封 密 内 号学级年名姓 线 封 密 外 ABCD9、计算的值为( )ABC82D17810、

3、邢台市某天的最高气温是17,最低气温是2,那么当天的温差是( )A19B-19 C15D-15第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,若满足条件_,则有ABCD,理由是_(要求:不再添加辅助线,只需填一个答案即可)2、如图,在ABC中,BC=3cm,BAC=60,那么ABC能被半径至少为 cm的圆形纸片所覆盖3、根据下列各式的规律,在横线处填空:, -_=_.4、关于x的一元二次方程(m5)x2+2x+2=0有实根,则m的最大整数解是_5、将一个圆分割成三个扇形,它们的圆心角度数比为,那么最大扇形的圆心角的度数为_三、解答题(5小题,每小题10分,共计50

4、分)1、如图1,O为直线AB上一点,过点O作射线OC,将一直角三角板()的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方(1)将图1中的三角板绕点O以每秒3的速度沿顺时针方向旋转一周,如图2,经过t秒后,OM恰好平分t的值是_;此时ON是否平分?说明理由;(2)在(1)的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分?请说明理由;(3)在(2)的基础上,经过多长时间,?请画图并说明理由2、如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且,抛物线的对称轴与直线BC交于点M,与x轴交于点N(1

5、)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与相似?若存在,求出点P的坐标,若不存在,请说明理由 线 封 密 内 号学级年名姓 线 封 密 外 (3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程3、如图,在平面直角坐标系中,抛物线与直线交于,两点,其中,(1)求该抛物线的函数表达式;(2)点,为直线下方抛物线上任意两点,且满足点的横坐标为,点的横坐标为,过点和点分别作轴的平行线交直线于点和点,连接,求四边形面积的最大值;(3

6、)在(2)的条件下,将抛物线沿射线平移个单位,得到新的抛物线,点为点的对应点,点为的对称轴上任意一点,点为平面直角坐标系内一点,当点,构成以为边的菱形时,直接写出所有符合条件的点的坐标,并任选其中一个点的坐标,写出求解过程4、某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量(件)与销售单价(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价(元)406080日销售量(件)806040(1)求公司销售该商品获得的最大日利润;(2)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过元,在日销售量(件)与销售单

7、价(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求的值5、已知直线与抛物线交于A,B两点(点A在点B的左侧),与抛物线的对称轴交于点P,点P与抛物线顶点Q的距离为2(点P在点Q的上方)(1)求抛物线的解析式;(2)直线与抛物线的另一个交点为M,抛物线上是否存在点N,使得?若存在,请求出点N的坐标;若不存在,请说明理由;(3)过点A作x轴的平行线交抛物线于点C,请说明直线过定点,并求出定点坐标-参考答案-一、单选题1、B【分析】根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得BAO=CAD,然后求出BAC=,再根据等腰三角形两底角相等求出ABC,然后

8、根据两直线平行,同旁内角互补表示出OBC,整理即可【详解】, 线 封 密 内 号学级年名姓 线 封 密 外 在中,整理得,故选:B【点睛】本题考查了全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键2、D【分析】解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.【详解】=1,解得:x=m3,关于x的分式方程=1的解是负数,m30,解得:m3,当x=m3=1时,方程无解,则m2,故m的取值范围是:m3且m2,故选D【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母

9、不为零是解题关键3、A【分析】根据点O没有条件限定,不一定在AB的垂直平分线上,可判断A,根据性质性质可判断B、C、D【详解】解:A当点O在AB的垂直平分线上时,满足OA=OB,由点O没有限制条件,为此点O为任意的,不一定在AB的垂直平分线上,故选项A不正确,符合题意;B由旋转可知OC与OC是对应线段,由旋转性质可得OC=OC,故选项B正确,不符合题意;C因为、都是旋转角,由旋转性质可得,故选项C正确,不符合题意;D由旋转可知与是对应角,由性质性质可得,故选项D正确,不符合题意故选择A【点睛】本题考查线段垂直平分线性质,图形旋转及其性质,掌握线段垂直平分线性质,图形旋转及其性质是解题关键4、A

10、【分析】根据 “幂的乘方”“同底数幂乘法”“合并同类项”“积的乘方”的运算法则,即可选出正确选项. 线 封 密 内 号学级年名姓 线 封 密 外 【详解】A选项,幂的乘方,底数不变,指数相乘,所以A选项正确.B选项,同底数幂相乘,底数不变,指数相加,所以B选项错误.C选项,合并同类项,字母和字母指数不变,系数相加,所以C选项错误.D选项,积的乘方,积中每一个因式分别乘方,所以D选项错误.故选A【点睛】整式计算基础题型,掌握运算法则,熟练运用.5、D【分析】先去分母,把分式方程转化为整式方程,然后求解即可【详解】解:去分母得,解得,经检验,是原分式方程的增根,所以原分式方程无解故选D【点睛】本题

11、主要考查分式方程的求解,熟练掌握分式方程的求解是解题的关键6、B【分析】根据弦的定义、弧的定义、以及确定圆的条件即可解决【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确其中错误说法的是两个故选B【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混

12、淆7、A【分析】根据有理数的加减法法则判断即可【详解】解:a0,b0,且|a|b|,-b0,|a|-b|,=a+(-b)0故选:A【点睛】本题考查有理数的加减法法则用到的知识点:减去一个数等于加上这个数的相反数,绝对值不等的 线 封 密 内 号学级年名姓 线 封 密 外 异号加减,取绝对值较大的加数符号8、B【分析】根据立体图形的特点进行判定即可得到答案【详解】解:A、C、D是柱体,B是锥体,所以,四个几何体中,与其他类型不同的是B故选B【点睛】本题主要考查了立体图形的识别,解题的关键在于能够准确找到立体图形的特点9、D【分析】根据有理数的混合运算计算即可;【详解】解:故选D【点睛】本题主要考

13、查了含有乘方的有理数混合运算,准确计算是解题的关键10、A【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】解:17-(-2)=17+2=19故选A【点睛】本题考查有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键二、填空题1、答案不唯一,如; 同位角相等,两直线平行 【分析】根据平行线的判定(同位角相等、内错角相等或同旁内角互补)写出一组条件即可.【详解】若根据同位角相等,判定可得:,AB/CD(同位角相等,两直线平行).故答案是:答案不唯一,如; 同位角相等,两直线平行.【点睛】考查了平行线的判定解答此类要判定两直线平行的题,可围绕

14、截线找同位角、内错角和同旁内角,再根据平行线的判定定理(同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行)解题2、【分析】作圆的直径,连接,根据圆周角定理求出,根据锐角三角函数的定义得出,代入求出即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:作圆O的直径CD,连接BD,圆周角A、D所对弧都是,D=A=60CD是直径,DBC=90sinD=又BC=3cm,sin60=,解得:CD=的半径是(cm)ABC能被半径至少为cm的圆形纸片所覆盖【点睛】本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是利用外接圆直径构造直角三角形求半径.

15、3、 【分析】观察不难发现,两个连续自然数的倒数的和减去后一个自然数的一半的倒数,等于这两个自然数的乘积的倒数.【详解】解:故答案为:;【点睛】本题是对数字变化规律的考查,比较简单,仔细观察分母的变化找出规律是解决本题的关键.4、m=4【详解】分析:若一元二次方程有实根,则根的判别式=b24ac0,建立关于m的不等式,求出m的取值范围还要注意二次项系数不为0详解:关于x的一元二次方程(m5)x2+2x+2=0有实根,=48(m5)0,且m50,解得m5.5,且m5,则m的最大整数解是m=4故答案为m=4点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式的关系:(1)0,方程有两个不相等

16、的实数根;(2)=0,方程有两个相等的实数根;(3)0方程没有实数根5、【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据它们的圆心角的度数和为周角,则利用它们所占的百分比计算它们的度数【详解】最大扇形的圆心角的度数=360=200故答案为200【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等三、解答题1、(1)5;是,理由见解析(2)5,理由见解析(3)秒或秒,理由见解析【分析】(1)由AOC的度数,求出COM的度数,根据互余可得出CON的度数,进而求出时间t;根据图形和题意得出AON+BOM

17、=90,CON+COM=90,再根据BOM=COM,即可得出ON平分AOC;(2)根据图形和题意得出AON+BOM=90,CON=COM=45,再根据转动速度从而得出答案;(3)需要分两种情况,当射线OC在直线AB上方时,在直线下方时两种情况,再根据旋转建立方程即可【小题1】解:AON+BOM=90,COM=MOB,AOC=30,BOC=2COM=150,COM=75,CON=15,AON=AOC-CON=30-15=15,AON=CON,解得:t=153=5;故答案为:5;是,理由如下:由上可知,CON=AON=15,ON平分AOC;【小题2】经过5秒时,OC平分MON,理由如下:AON+B

18、OM=90,CON=COM,MON=90,CON=COM=45,三角板绕点O以每秒3的速度顺时针旋转,射线OC也绕O点以每秒6的速度顺时针旋转,设AON为3t,AOC为30+6t,当OC平分MON时,CON=COM=45,AOC-AON=45,可得:30+6t-3t=45,解得:t=5;【小题3】 线 封 密 内 号学级年名姓 线 封 密 外 根据题意,有两种情况,当射线OC在直线AB上方时,如图4,当射线OC在直线直线AB下方时,如图4,则有30+6t+10=180,或30+6t-10=180,解得t=或,经过秒或秒时,BOC=10【点睛】此题考查了角的计算,关键是应该认真审题并仔细观察图形

19、,找到各个量之间的关系求出角的度数是解题的关键2、(1)(2)存在,点或(3),【分析】(1)用待定系数法即可求解;(2)当CPM为直角时,则PCx轴,即可求解;当PCM为直角时,用解直角三角形的方法求出PN=MN+PM=,即可求解;(3)作点C关于函数对称轴的对称点C(2,8),作点D关于x轴的对称点D(0,-4),连接CD交x轴于点E,交函数的对称轴于点F,则点E、F为所求点,进而求解(1)由题意得,点A、B、C的坐标分别为(-2,0)、(4,0)、(0,8),设抛物线的表达式为y=ax2+bx+c,则,解得,故抛物线的表达式为y=-x2+2x+8;(2)存在,理由:当CPM为直角时,则以

20、P、C、M为顶点的三角形与MNB相似时,则PCx轴,则点P的坐标为(1,8);当PCM为直角时,在RtOBC中,设CBO=,则,则, 线 封 密 内 号学级年名姓 线 封 密 外 在RtNMB中,NB=4-1=3,则,同理可得,MN=6,由点B、C的坐标得,则,在RtPCM中,CPM=OBC=,则,则PN=MN+PM=,故点P的坐标为(1,),故点P的坐标为(1,8)或(1,);(3)D为CO的中点,则点D(0,4),作点C关于函数对称轴的对称点C(2,8),作点D关于x轴的对称点D(0,-4),连接CD交x轴于点E,交函数的对称轴于点F,则点E、F为所求点,理由:G走过的路程=DE+EF+F

21、C=DE+EF+FC=CD为最短,由点C、D的坐标得,直线CD的表达式为y=6x-4,对于y=6x-4,当y=6x-4=0时,解得,当x=1时,y=2,故点E、F的坐标分别为、(1,2);G走过的最短路程为CD= 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系3、(1)抛物线表达式为;(2)当时,S四边形PQDC最大=;(3)所有符合条件的点的坐标()或()或()或()【分析】(1)利用待定系数法求抛物线解析式抛物线过,两点,代入坐标得:,解方程组即可;(2)根据点

22、的横坐标为,点的横坐标为,得出,解不等式组得出,用m表示点P,点Q,用待定系数法求出AB解析式为,用m表示点C,点D,利用两点距离公式求出PC=,QD=,利用梯形面积公式求出S四边形PQDC=即可;(3)根据勾股定理求出AB=,将抛物线配方,根据平移 线 封 密 内 号学级年名姓 线 封 密 外 ,得出抛物线向右平移4个单位,再向下平移2个单位, 求出新抛物线,根据, 求出点P,与对应点E,平移后新抛物线对称轴为,设点G坐标为,点F()分两类四种种情况,四边形BEFG为菱形,BE=EF,根据勾股定理,求出点F(),(),当点F()时,点G、F、E、B坐标满足,得出 G(),点F()时,点G3、

23、F、E、B坐标满足, ,得出G3(),四边形BEFG为菱形,BE=BF,根据勾股定理,点F(),(),点F()时,点G1、F、E、B坐标满足, ,得出 G1(),点F()时,点G2、F、E、B坐标满足,得出G2()【详解】解:(1)抛物线过,两点,代入坐标得:,解得:,抛物线表达式为;(2)点,为直线下方抛物线上任意两点,且满足点的横坐标为,点的横坐标为,解得,点P,点Q设AB解析式为,代入坐标得:,解得:,AB解析式为,点C,点DPC=,QD=S四边形PQDC=,当时,S四边形PQDC最大=; 线 封 密 内 号学级年名姓 线 封 密 外 (3)AB=,抛物线向右平移4个单位,再向下平移2个

24、单位, ,点P,对应点E,平移后新抛物线对称轴为,设点G坐标为,点F(),分两类四种种情况,四边形BEFG为菱形,BE=EF,根据勾股定理,或,点F(),(),当点F()时,点G、F、E、B坐标满足:,解得,解得,G();点F()时,点G3、F、E、B坐标满足:,解得,解得,G3();四边形BEFG为菱形,BE=BF,根据勾股定理, 线 封 密 内 号学级年名姓 线 封 密 外 或,点F(),(),点F()时,点G1、F、E、B坐标满足:,解得,解得,G1();点F()时,点G2、F、E、B坐标满足:,解得,解得,G2(),综合所有符合条件的点的坐标()或()或()或()【点睛】本题考查待定系

25、数法求抛物线解析式与直线解析式,两点距离,梯形面积,二次函数顶点式最值,抛物线平移,菱形性质,图形与坐标,本题难度大,解题复杂,计算要求非常准确,考查学生多方面能力,知识掌握情况,阅读,分类,数形结合,运算,画图是中考难题4、(1)当销售单价是75元时,最大日利润是2025元;(2)【分析】(1)先求解商品的日销售量(件)与销售单价(元)的函数关系式,再利用该商品获得的最大日利润等于每件商品的利润乘以销售数量建立二次函数的关系式,再利用二次函数的性质可得答案;(2)先利用该商品获得的最大日利润等于每件商品的利润乘以销售数量建立二次函数的关系式,再求解当利润为元时的值,再分两种情况讨论即可.(1

26、)解:设商品的日销售量(件)与销售单价(元)是 解得: 所以商品的日销售量(件)与销售单价(元)是 设公司销售该商品获得的日利润为元, 线 封 密 内 号学级年名姓 线 封 密 外 抛物线开口向下,函数有最大值,当时,答:当销售单价是75元时,最大日利润是2025元(2)解:,当时,解得,有两种情况,时,在对称轴左侧,随的增大而增大,当时,时,在范围内,这种情况不成立,【点睛】本题考查的是利用待定系数法求解一次函数的解析式,列二次函数的关系式,二次函数的性质,一元二次方程的解法,掌握“该商品获得的最大日利润等于每件商品的利润乘以销售数量”是解本题的关键.5、(1)(2)存在,或(3),理由见解

27、析【分析】(1)根据题意可得直线过定点,根据点P与抛物线顶点Q的距离为2(点P在点Q的上方),求得顶点坐标,根据顶点式求得的值,即可求得抛物线解析式;(2)过点分别作轴的垂线,垂足分别为,设抛物线与轴的另一个交点为,连接,交轴于点,过点作交轴于点,交于点,求得点的坐标,证明,即找到一个点,根据对称性求得直线的解析式,联立二次函数解析式找到另一个点;(3)设,则点坐标为,设直线的解析式为,求得解析式,进而求得,联立直线和二次函数解析式,根据一元二次方程根与系数的关系求得,代入直线解析式,根据解析式判断定点的坐标即可(1),则当时,则必过定点,的对称轴为,顶点为与抛物线的对称轴交于点P,则点P与抛

28、物线顶点Q的距离为2(点P在点Q的上方),抛物线解析式为: 线 封 密 内 号学级年名姓 线 封 密 外 (2)存在,或直线的解析式为联立直线与抛物线解析式解得即如图,过点分别作轴的垂线,垂足分别为,连接,交轴于点,过点作交轴于点,交于点,,则此时点与点重合,设直线的解析式为则解得令,则四边形是矩形四边形是正方形 线 封 密 内 号学级年名姓 线 封 密 外 设直线的解析式分别为则解得解析式为联立解得或综上所述,或(3)设,则点坐标为,设直线的解析式为,联立 线 封 密 内 号学级年名姓 线 封 密 外 过定点【点睛】本题考查了待定系数法求二次函数解析式,正切的定义,解直角三角形,正方形的性质,直线与二次函数交点问题,数形结合是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁