《2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系专题攻克试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系专题攻克试卷(含答案详解).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学第二学期第十五章平面直角坐标系专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是()A直线x1Bx轴Cy轴D直线x
2、2、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动即(0,0)(0,1)(1,1) (1,0) ,且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )A(4,0)B(5,0)C(0,5)D(5,5)3、若点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为( )A(1,2)B(2,1)C(2,1)D(2,1)4、平面直角坐标系中,下列在第二象限的点是( )ABCD5、在平面直角坐标系中,点在轴上,则点的坐标为( )ABCD6、ABC在平面直角坐标系中的位置如图所示,将其绕点P顺时针旋转得到ABC,则点P的坐标
3、是()A(4,5)B(4,4)C(3,5)D(3,4)7、点向上平移2个单位后与点关于y轴对称,则( )A1BCD8、在ABC中,ABAC,点B,点C在直角坐标系中的坐标分别是(2,0),(2,0),则点A的坐标可能是( )A(0,2)B(0,0)C(2,2)D(2,2)9、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点D为AB的中点,将点D绕着点A旋转90得到点D的坐标为( )A(2,1)或(2,1)B(2,5)或(2,3)C(2,5)或(2,3)D(2,5)或(2,5)10、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )ABCD第卷(非选择题
4、70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等(1)直接写出点D的坐标_;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为_2、在平面直角坐标系中,点P(2,3)到x轴的距离为 _3、若点A(m,5)与点B(4,n)关于原点成中心对称,则mn_4、(1)把点P(2,-3)向右平移2个单位长度到达点,则点的坐标是_(2)把点A(-2,-3)向下平移3个单位长度到达点B,则点B的坐标是_(3)把点P(2,3)向左平移4个单位长度,再向上平移4个单位长度
5、到达点,则点的坐标是_5、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45后得到正方形OA1B1C1,依此方式,绕点O连续旋转2022次得到正方形OA2022B2022C2022,如果点A的坐标为(1,0),那么点B2022的坐标为 _三、解答题(10小题,每小题5分,共计50分)1、如图(1)敌方战舰C和我方战舰2号在我方潜艇什么方向?(2)如何确定敌方战舰B的位置?2、如图,在平面直角坐标系中,三个顶点的坐标为、(1)在图中作出关于轴的对称图形;(2)请直接写出点的坐标_;(3)在轴上画出一点使的值最小3、如图,方格图中每个小正方形的边长为1,点A,B,C都是格点(1)画出A
6、BC关于直线MN对称的(2)若B为坐标原点,请写出、的坐标,并直接写出的长度(3)如图2,A,C是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小(保留作图痕迹)4、如图,在直角坐标系中按要求作图,所画图形的顶点必须与每个小正方形的顶点重合(1)画出一个面积等于9的等腰直角三角形ABC,使ABC的三个顶点在坐标轴上,且ABC关于y轴对称,其中点A的坐标为(0,3);(点B在点C的左侧)(2)将ABC向下平移3个单位,再向右平移1个单位得到A1B1C1(点A、B、C的对应点分别为点A1、B1、C1),画出A1B1C1,并直接写出A1C的长5、如图,在平面直角坐标系中,AB
7、C三个顶点的坐标分别为A(2,4),B(1,1),C(3,2)(1)将ABC向下平移四个单位长度,画出平移后的A1B1C1;(点A、B、C的对应点分别是点A1、B1、C1);(2)画出A1B1C1关于y轴对称的A2B2C2(点A1、B1、C1的对称点分别是点A2、B2、C2)6、(探索发现)等腰RtABC中,BAC90,ABAC,点A、B分别是y轴、x轴上两个动点, 直角边 AC 交x轴于点D,斜边BC交y轴于点E(1)如图1,已知C点的横坐标为1,请直接写出点A的坐标 (2)如图2,当等腰RtABC运动到使点D恰为AC中点时,连接DE,求证:ADBCDE(拓展应用)(3)如图3,若点A在x轴
8、上,且A(4,0),点B在y轴的正半轴上运动时,分别以OB、 AB为直角边在第一、二象限作等腰直角BOD和等腰直角ABC,连接CD交y轴于点P,当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请直接写出BP的长度为 7、如图,在平面直角坐标系中,ABC的三个顶点的坐标分别为A(2,1),B(0,1),C(0,4)(1)画出ABC关于x轴对称的A1B1C1,A、B、C的对应点分别为A1,B1,C1;(2)画出ABC绕原点O逆时针方向旋转90得到的A2B2C2,A、B、C的对应点分别为A2,B2,C2连接B2C2,并直接写出线段B2C2的长度8、如图,在平面直角坐标系
9、中,的三个顶点均在格点上(1)在网格中作出关于轴对称的图形;(2)直接写出以下各点的坐标:_,_,_;(3)网格的单位长度为1.则_9、(1)如图所示,图中的两个三角形关于某点对称,请找出它们的对称中心O(2)如图所示,已知ABC的三个顶点的坐标分别为A(4,1),B(1,1),C(3,2)将ABC绕原点O旋转180得到A1B1C1,请画出A1B1C1,并写出点A1的坐标10、如图所示,在平面直角坐标系中,已知,(1)在平面直角坐标系中画出,并求出的面积;(2)在(1)的条件下,把先关于y轴对称得到,再向下平移3个单位得到,则中的坐标分别为( ),( ),( );(直接写出坐标)(3)已知为轴
10、上一点,若的面积为4,求点的坐标-参考答案-一、单选题1、B【分析】根据轴对称的性质判断即可【详解】解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x轴故选:B【点睛】本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键2、C【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;
11、质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;故选:C【点睛】本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间找出规律是解题的关键3、D【分析】先判断出点的横、纵坐标的符号,再根据点到轴、轴的距离即可得【详解】解:点在第四象限,点的横坐标为正数,纵坐标为负数,点到轴的距离为1,到轴的距离为2,点的纵坐
12、标为,横坐标为2,即,故选:D【点睛】本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键4、C【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)5、A【分
13、析】根据轴上的点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标【详解】解:点在轴上,解得故选A【点睛】本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键平面直角坐标系中坐标轴上点的坐标特点:x轴正半轴上的点:横坐标0,纵坐标=0;x轴负半轴上的点:横坐标0;y轴负半轴上的点:横坐标=0,纵坐标0;坐标原点:横坐标=0,纵坐标=06、B【分析】对应点的连线段的垂直平分线的交点,即为所求【详解】解:如图,点即为所求,故选:B【点睛】本题考查坐标与图形变化旋转,解题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心7、D【分析】利用平移及关于y轴对称点的性质即
14、可求解【详解】解:把向上平移2个单位后得到点 ,点与点关于y轴对称, , , ,故选:D【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂8、A【分析】由题意可知BOCO,又ABAC,得点A在y轴上,即可求解【详解】解:由题意可知BOCO,又ABAC,AOBC,点A在y轴上,选项A符合题意,B选项三点共线,不能构成三角形,不符合题意;选项C、D都不在y轴上,不符合题意;故选:A【点睛】本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置9、C【分析】分顺时针和逆时针旋转90两种情况讨论,构造全等三角形即可求解【详解】解:设点D
15、绕着点A逆时针旋转90得到点D1,分别过点D,D1作轴的垂线,分别交轴于点C、E,如图:根据旋转的性质得DAD1=90,AD1=AD,AED1=ACD=90,D1+EAD1=90,EAD1 +DAC=90,D1=DAC,AD1EDAC,CD=AE,ED1=AC,A(0,4),B(2,0),点D为AB的中点,点D的坐标为(1,2),CD=AE=1,ED1=AC=AO-OC=2,点D1的坐标为(2,5);设点D绕着点A顺时针旋转90得到点D2,同理,点D2的坐标为(-2,3),综上,点D绕着点A旋转90得到点D的坐标为(-2,3)或(2,5),故选:C【点睛】本题考查了坐标与图形的变化-旋转,全等
16、三角形的判定和性质,根据平面直角坐标系确定出点D1和D2的位置是解题的关键10、C【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可【详解】解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1)故选:C【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加二、填空题1、 或【分析】(1)观察坐标系即可得点D坐标;(2)对应点连线段的垂直平分线的交点即为旋转中心【详解】解:(1)观察图象可知,点D的坐标为(6,6),故答案
17、为:(6,6);(2)当点A与C对应,点B与D对应时,如图:此时旋转中心P的坐标为(4,2);当点A与D对应,点B与C对应时,如图:此时旋转中心P的坐标为(1,5);故答案为:(4,2)或(1,5)【点睛】本题考查坐标与图形变化旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心2、3【分析】根据点的纵坐标的绝对值是点到轴的距离,可得答案【详解】在平面直角坐标系中,点P(2,3)到轴的距离为3故答案为:3【点睛】本题考查了点的坐标,点的纵坐标的绝对值是点到轴的距离,横坐标的绝对值是点到轴的距离3、【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求
18、解即可【详解】解:点A(m,5)与点B(4,n)关于原点成中心对称,m=4,n=-5,m+n=-5+4=-1,故答案为:-1【点睛】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键4、 (4,-3) (-2,-6) (-2,7) 【分析】(1)根据点向右平移2个单位即横坐标加2,纵坐标不变求解即可;(2)根据点向下平移3个单位即横坐标不变,纵坐标减3求解即可;(3)根据点向左平移4个单位长度,再向上平移4个单位即横坐标减4,纵坐标加4求解即可【详解】解:(1)把点P(2,-3)向右平移2个单位长度到达点,横坐标加2,纵坐标不变,点的坐标是(4,-3
19、);(2)把点A(-2,-3)向下平移3个单位长度到达点B,横坐标不变,纵坐标减3,点B的坐标是(-2,-6);(3)把点P(2,3)向左平移4个单位长度,再向上平移4个单位长度到达点,横坐标减4,纵坐标加4,点的坐标是(-2,7)故答案为:(4,-3);(-2,-6);(-2,7)【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小5、(1,1)【分析】先利用勾股定理以及正方形、旋转的性质求出对应边长
20、,再通过边长找出对应的前几个坐标,会发现:关于B的坐标,是每8个一循环,找到第2022个是对应的循环中的第6个,从而确定B2022坐标【详解】点A的坐标为(1,0),OA1,四边形OABC是正方形,OAB90,ABOA1,B(1,1),连接OB,如图:由勾股定理得:OB,由旋转的性质得:OBOB1OB2OB3,将正方形OABC绕点O逆时针旋转45后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45,依次得到AOBBOB1B1OB245,B1(0,),B2(1,1),B3(,0),B4(1,1),B5(0,),B6(1,1),发现是8次一循环,则202282526,点B2022的坐标
21、为(1,1),故答案为:(1,1)【点睛】本题主要是图形旋转类的坐标规律问题,利用图形以及旋转的性质求出对应前几个相应点的坐标,从而发现其中规律,应用规律进行求解是解决此类问题的关键三、解答题1、(1)敌方战舰C和我方战舰2号在我方潜艇的正东方;(2)要确定敌方战舰B的位置,需要敌方战舰B与我方潜艇的方向和距离两个数据【分析】(1)根据图中的位置与方向即可确定(2)要确定每艘战舰的位置,需要知道每艘战舰分别在什么方向和与我方潜艇的距离是多少【详解】(1)由图像可知,敌方战舰C和我方战舰2号在我方潜艇正东方(2)仅知道在我方潜艇北偏东40方向有小岛,而要确定敌方战舰B的位置,还需要敌方战舰B与我
22、方潜艇的方向和距离两个数据【点睛】本题考查了方向角的表示,方向角:指正北或指正南方向线与目标方向线所成的小于的角叫做方向角2、(1)见解析;(2);(3)见解析【分析】(1)根据题意得:点、关于轴的对称的的对应点分别为、,再顺次连接,即可求解;(2)根据和关于轴的对称图形,即可求解;(3)作点 关于 轴的对称点 ,连接 交 轴于点 ,根据点 与 关于轴对称,可得,即可求解【详解】解:根据题意得:点、关于轴的对称的的对应点分别为、,画出图形,如图所示:(2)点的坐标为;(3)如图,作点关于 轴的对称点 ,连接 交 轴于点 ,则点即为所求,点 与 关于轴对称, ,即当点 三点共线时,的值最小【点睛
23、】本题主要考查了坐标与图形,图形变换轴对称,线段最短问题,熟练掌握若两点关于y轴对称,则横坐标互为相反数,纵坐标不变;若两点关于x轴对称,则横坐标不变,纵坐标互为相反数;两点间线段最短是解题的关键3、(1)画图见解析;(2),;(3)画图见解析【分析】(1)分别确定关于对称的对称点 再顺次连接从而可得答案;(2)根据在坐标系内的位置直接写其坐标与的长度即可;(3)先确定关于的对称点,再连接 交于 则 从而可得答案.【详解】解:(1)如图1,是所求作的三角形,(2)如图1,为坐标原点,则 (3)如图2,点即为所求作的点.【点睛】本题考查的是画轴对称图形,建立坐标系,用根据点的位置确定点的坐标,轴
24、对称的性质,掌握“利用轴对称的性质得到两条线段和取最小值时点的位置”是解本题的关键.4、(1)见解析;(2)画图见解析,A1C的长为4【详解】解:(1)如图,ABC即为所求AO=BO=CO=3,且AOBC,BAO=CAO=45,ABC的面积=BCAO=9,BAC=90,且ABC关于y轴对称;(2)如图,A1B1C1即为所求如图,A1C的长为4【点睛】本题考查了根据平移变换作图以及等腰直角三角形的判定和性质,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接5、(1)图见解析;(2)图见解析【分析】(1)先根据平移分别画出点,再顺次连接即可得;(2)先根据轴对称的性质画出点,再顺次连接即
25、可得【详解】解:(1)如图,即为所求;(2)如图,即为所求【点睛】本题考查了平移作图、画轴对称图形,熟练掌握平移和轴对称的作图方法是解题关键6、(1)A(0,1);(2)见解析;(3)不变,2【分析】(1)如图(1),过点C作CFy轴于点F,构建全等三角形:ACFBAO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;(2)过点C作CGAC交y轴于点G,则ACGBAD(ASA),即得CG=AD=CD,ADB=G,由DCE=GCE=45,可证DCEGCE(SAS)得CDE=G,从而得到结论;(3)BP的长度不变,理由如下:如图(3),过点C作CHy轴于
26、点H,构建全等三角形:CBHBAO(AAS),结合全等三角形的对应边相等推知:CH=BO,BH=AO=4再结合已知条件和全等三角形的判定定理AAS得到:CPHDPB,故BP=HP=2【详解】解:(1)如图(1),过点C作CFy轴于点F,CFy轴于点F,CFA=90,ACF+CAF=90,CAB=90,CAF+BAO=90,ACF=BAO,在ACF和ABO中,ACFBAO(AAS),CF=OA=1,A(0,1);(2)如图2,过点C作CGAC交y轴于点G,CGAC,ACG=90,CAG+AGC=90,AOD=90,ADO+DAO=90,AGC=ADO,在ACG和ABD中,ACGBAD(AAS),
27、CG=AD=CD,ADB=AGC,ACB=45,ACG=90,DCE=GCE=45,在DCE和GCE中,DCEGCE(SAS),CDE=AGC,ADB=CDE;(3)BP的长度不变,理由如下:如图,过点C作CHy轴于点H ABC=90,CBH+ABO=90BAO+ABO=90,CBH=BAOCHB=AOB=90,AB=AC,CBHBAO(AAS),CH=BO,BH=AO=4BD=BO,CH=BDCHP=DBP=90,CPE=DPB,CPHDPB(AAS),BP=HP=2故答案为:2【点睛】本题考查了三角形综合题主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形
28、7、(1)作图见解析;(2)作图见解析,【分析】(1)关于轴对称,即对应点横坐标不变,纵坐标互为相反数,找出坐标即可;(2)根据旋转的性质可画出图形,即可找出的坐标,由即可得出答案【详解】(1)关于轴对称的如图所作,,,;(2)绕原点逆时针方向旋转得到的如图所示,由旋转的性质得:【点睛】本题考查轴对称与旋转作图,掌握轴对称的性质以及旋转的性质是解题的关键8、(1)见解析;(2); ;(3)5【分析】(1)利用轴对称的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)根据点的位置写出坐标即可;(3)把三角形的面积看成矩形面积减去周围三个三角形面积即可【详解】解:(1)如图,A1B1C1即
29、为所求;(2)A1(3,4),B1(5,2),C1(2,0)故答案为:(3,4),(5,2),(2,0);(3)网格的单位长度为1,则=34-23-22-14=5,故答案为:5【点睛】本题考查轴对称,三角形的面积等知识,解题的关键是掌握轴对称的性质,学会利用分割法求三角形面积9、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1)【分析】(1)根据对称中心的性质可得对应点连线的交点即为对称中心;(2)根据题意作出A,B,C绕原点O旋转180得到的点A1,B1,C1,然后顺次连接A1,B1,C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标【详解】(1)如图所示,点O即为要求作的对
30、称中心(2)如图所示,A1B1C1即为要求作的三角形,由点A1的在平面直角坐标系中的位置可得,点A1的坐标为(-4,1)【点睛】此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质10、(1)见解析,4;(2)0,-2,-2,-3,-4,0;(3)或【分析】(1)先画出ABC,然后再利用割补法求ABC得面积即可;(2)先作出,然后结合图形确定所求点的坐标即可;(3)先求出PB的长,然后分P在B的左侧和右侧两种情况解答即可【详解】解:(1)画出如图所示:的面积是:;(2)作出如图所示,则(0,-2),( -2,-3),(-4,0)故填:0,-2,-2,-3,-4,0;(3)P为x轴上一点,的面积为4,当P在B的右侧时,横坐标为:当P在B的左侧时,横坐标为,故P点坐标为:或【点睛】本题主要考查了轴对称、三角形的平移、三角形的面积以及平面直角坐标系中点的坐标等知识点,根据题意画出图形成为解答本题的关键