《2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数难点解析试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数难点解析试题(含解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版(上海)七年级数学第二学期第十二章实数难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、,3,的大小顺序是()ABCD2、下列说法正确的是( )A是的平方根B是的算术平方根C2是-4的算术平方
2、根D的平方根是它本身3、可以表示( )A0.2的平方根B的算术平方根C0.2的负的平方根D的立方根4、100的算术平方根是( )A10BCD5、对于两个有理数、,定义一种新的运算:,若,则的值为( )ABCD6、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数若每个小立方块的体积为216cm,则该几何体的最大高度是( )A6cmB12cmC18cmD24cm7、实数2,0,3,中,最小的数是()A3BC2D08、下列说法正确的是( )A5是25的算术平方根B的平方根是6C(6)2的算术平方根是6D25的立方根是5
3、9、平方根和立方根都等于它本身的数是( )A1B1C0D110、下列各数是无理数的是( )A3BC2.121121112D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若m、n是两个连续的整数,且,则_2、计算: = _3、计算下列各题:(1)|34|1_;(2)_;(3)30_;(4)_4、绝对值不大于4且不小于的整数分别有_5、 “平方根节”是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如:2009年的3月3日,2016年的4月4日请写出你喜欢的一个“平方根节”(题中所举的例子除外)_年_月_日三、解答题(10小题,每小题5分,
4、共计50分)1、计算:2、计算:+3、(1)计算:;(2)计算:(2x2)2+x3xx5x;(3)先化简再求值:2(a+2)24(a+3)(a3)+3(a1)2,其中a14、已知(1)求x与y的值;(2)求x+y的算术平方根5、计算:(-4)0+-6-+6、计算:(1) (2)7、任何实数a,可用a表示不超过a的最大整数,如4=4,=1现对72进行如下操作:72第一次=8,第二次=2,第三次=1,这样对72只需进行3次操作变为1(1)对10进行1次操作后变为_,对200进行3次作后变为_;(2)对实数m恰进行2次操作后变成1,则m最小可以取到_;(3)若正整数m进行3次操作后变为1,求m的最大
5、值8、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b9)20,c1(1)a ,b ;(2)点P为数轴上一动点,其对应的数为x,则当x 时,代数式|xa|xb|取得最大值,最大值为 ;(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍?9、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?10、计算:-参考答案-一、单选题1、B【分析
6、】根据实数的大小比较法则即可得【详解】解:,则,故选:B【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键2、A【分析】根据平方根的定义及算术平方根的定义解答【详解】解:A、是的平方根,故该项符合题意;B、4是的算术平方根,故该项不符合题意;C、2是4的算术平方根,故该项不符合题意;D、1的平方根是,故该项不符合题意;故选:A【点睛】此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键3、C【分析】根据平方根和算术平方根的定义解答即可【详解】解:可以表示0.2的负的平方根,故选:C【点睛】此题考查了算术平方根和平方根解题的关键是掌握平方根和算术平方根的定义,要注意
7、:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数4、A【分析】根据算术平方根的概念:一个正数x的平方等于a,即,那么这个正数x就叫做a的算术平方根,即可解答【详解】解:,(舍去)100的算术平方根是10,故选A【点睛】本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念5、D【分析】根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.【详解】解: , , ,解得: 故选D【点睛】本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.6、D【分析】由每个小立方体的体积为216cm3,得到小立方体的棱
8、长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是46=24cm【详解】解:每个小立方体的体积为216cm3,小立方体的棱长,由三视图可知,最高处有四个小立方体,该几何体的最大高度是46=24cm,故选D【点睛】本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长7、A【分析】根据实数的性质即可判断大小【详解】解:302故选A【点睛】此题主要考查实数的大小比较,解题的关键是熟知实数的性质8、A【分析】如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的立方等于a,那么这个数叫做a的立方根
9、;据此判断即可【详解】解:A、5是25的算术平方根,正确,符合题意;B、,6的平方根是,错误,不符合题意;C、(6)2的算术平方根是6,错误,不符合题意;D、25的平方根是5,错误,不符合题意;故选:A【点睛】本题考查了平方根、算术平方根、立方根,熟练掌握相关定义是解本题的关键9、C【分析】根据平方根和立方根的定义,可以求出平方根和立方根都是本身数是0【详解】解:平方根是本身的数有0,立方根是本身的数有1,-1,0;平方根和立方根都是本身的数是0故选C【点睛】本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数a,b(b0),满足,那么a就叫做b的平方根;如果有两个数c、d满
10、足,那么c就叫做d的立方根10、D【分析】根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可【详解】A、-3是整数,属于有理数B、是分数,属于有理数C、2.121121112是有限小数,属于有理数D、是无限不循环小数,属于无理数故选:D【点睛】本题主要是考察无理数的概念,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112,等有规律的数二、填空题1、11【分析】根据无理数的估算方法求出、的值,由此即可得【详解】解:,5、6是两个连续的整数,且,故答案为:11【点睛】本题考查了无理数的估算和代数式求值,熟练掌握无理数的估算方法是解题
11、关键2、#【分析】根据求一个数的立方根,化简绝对值,求一个数的算术平方根,进行实数的混合运算【详解】解:故答案为:【点睛】本题考查了一个数的立方根,化简绝对值,求一个数的算术平方根,掌握以上知识是解题的关键3、0 3 1 【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得【详解】解:(1)原式,故答案为:0;(2)原式,故答案为:3;(3)原式,故答案为:1;(4)原式,故答案为:【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键4、4【分析】根据
12、绝对值的意义及实数的大小比较可直接进行求解【详解】解:由绝对值不大于4且不小于的整数分别有4和;故答案为4和【点睛】本题主要考查绝对值的意义及实数的大小比较,熟练掌握绝对值的意义及实数的大小比较是解题的关键5、2025 5 5 【分析】首先确定月份和日子,最后确定年份即可(答案不唯一)【详解】解:2025年5月5日(答案不唯一)故答案是:2025,5,5【点睛】本题考查了平方根的应用,解题的关键是正确理解三个数字的关系三、解答题1、2【分析】先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.【详解】解:【点睛】本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以
13、上基本运算的运算法则是解本题的关键.2、【分析】先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得【详解】解:原式【点睛】本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键3、(1)8;(2)4x4;(3)a2+2a+47,46【分析】(1)首先根据算术平方根,立方根和绝对值的性质化简,然后利用有理数的加减混合运算法则求解即可;(2)先算乘方,再算乘除,然后合并同类项求解即可;(3)先根据整式的乘法运算法则化简,然后合并同类项,最后代入求解即可【详解】解:(1)原式92(1)7+18;(2)原式4x4+x4x44x4;(3)原式2(a2+4a+4)4(a
14、29)+3(a22a+1)2a2+8a+84a2+36+3a26a+3a2+2a+47,当a1时,原式(1)2+2(1)+4712+4746【点睛】此题考查了算数平方根,立方根和绝对值的意义,积的乘方运算,同底数幂的乘法和除法运算,整式的乘法运算公式,合并同类项等知识,解题的关键是熟练掌握以上运算的法则4、(1),;(2)2【分析】(1)根据绝对值和平方根的非负性求出x与y的值;(2)先计算的值,即可得出的算术平方根【详解】(1)由题可得:,解得:,;(2),4的算术平方根为2,的算术平方根为2【点睛】本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键5、9【
15、分析】根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解【详解】解:原式【点睛】本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键6、(1)5;(2)【分析】(1)分别求解算术平方根与立方根,再进行加减运算即可;(2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.【详解】解:(1)(2)【点睛】本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.7、(1)3;1;(2);(3)的最大值为255【详解】解:(1),对10进行
16、1次操作后变为3;同理可得,同理可得,同理可得,对200进行3次作后变为1,故答案为:3;1;(2)设m进行第一次操作后的数为x,要经过两次操作故答案为:(3)设m经过第一次操作后的数为n,经过第二次操作后的数为x,要经过3次操作,故是整数的最大值为255【点睛】本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键8、(1)3,9;(2)9,12;(3)秒或秒【分析】(1)由|a+3|+(b9)20,根据非负数的性质得|a+3|0,(b9)20,即可求出a3、b9;(2)由(1)得a3、b9,则代数式|xa|xb|即代数式|x+3|x9|,按x3、3x9及x9分类讨论,分别求出相应
17、的代数式的值或范围,再确定代数式的最大值;(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可【详解】解:(1)|a+3|0,(b9)20,且|a+3|+(b9)20,|a+3|0,(b9)20,a3,b9,故答案为:3,9(2)a3,b9,代数式|xa|xb|即代数式|x+3|x9|,当x3时,|x+3|x9|(x+3)(9x)12;当3x9时,|x+3|x9|x+3(9x)2x6,122x612,12|x+3|x9|12;当x9时,|x+3|x9|x+3(x9)12,综上所述,|x+3|x9|的最大值为12
18、,故答案为:9,12(3)点C表示的数是1,点B表示的数是9,B、C两点之间的距离是918,当点Q与点C重合时,则2t8,解得t4,当0t4时,如图1,点P表示的数是3t,点Q表示的数是92t,根据题意得92t(3t)22t,解得t;当4t8时,如图2,点P表示的数仍是3t,1+(2t8)2t7,点Q表示的数是2t7,根据题意得2t7(3t)2(162t),解得t,综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍【点睛】本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键9、这个长方体的长、宽、高分别为、【分
19、析】根据题意设这个长方体的长、宽、高分别为4x、2x、x,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可【详解】解:设这个长方体的长、宽、高分别为4x、2x、x根据题意得:4x2x24,解得:x或x(舍去)则4x4,2x2所以这个长方体的长、宽、高分别为4cm、2cm、cm【点睛】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键10、-10【分析】根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算【详解】解:, , 【点睛】本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值