《备考练习2022年河北省邢台市中考数学第三次模拟试题(含答案及详解).docx》由会员分享,可在线阅读,更多相关《备考练习2022年河北省邢台市中考数学第三次模拟试题(含答案及详解).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年河北省邢台市中考数学第三次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某种速冻水饺的储藏温度是,四个冷藏室的温度如下,不适合储藏此种水
2、饺是( )ABCD2、下列说法: (1)“两直线平行,同位角相等”与“同位角相等,两直线平行”互为逆定理;(2)命题“如果两个角相等,那么它们都是直角”的逆命题为假命题;(3)命题“如果-a=5,那么a=-5”的逆命题为“如果-a-5,那么a-5”,其中正确的有( )A0个B1 个C2个D3个3、如图,在O中,直径CD弦AB,则下列结论中正确的是AAC=ABBC=BODCC=BDA=B0D4、甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可
3、列方程为()A=B=C=D=5、下列说法正确的是( )A的倒数是B的绝对值是C的相反数是Dx取任意有理数时,都大于06、邢台市某天的最高气温是17,最低气温是2,那么当天的温差是( )A19B-19 C15D-157、计算的值为( )ABC82D1788、如果零上2记作2,那么零下3记作( )A3B2C3D29、如图,点B和点C是对应顶点,记,当时,与之间的数量关系为( )ABCD10、已知三角形的一边长是6 cm,这条边上的高是(x4)cm,要使这个三角形的面积不大于30 cm2,则x的取值范围是()Ax6Bx6Cx4D4x6 线 封 密 内 号学级年名姓 线 封 密 外 第卷(非选择题 7
4、0分)二、填空题(5小题,每小题4分,共计20分)1、比较大小(填“”或“”): _.2、关于x的一元二次方程(m5)x2+2x+2=0有实根,则m的最大整数解是_3、如图,半圆O的直径AE4,点B,C,D均在半圆上若ABBC,CDDE,连接OB,OD,则图中阴影部分的面积为_.4、如图,在高米,坡角为的楼梯表面铺地毯,地毯的长度至少需要_米(精确到米)5、以下说法:两点确定一条直线;两点之间直线最短;若,则;若a,b互为相反数,则a,b的商必定等于其中正确的是_(请填序号)三、解答题(5小题,每小题10分,共计50分)1、如图1,在平面直角坐标系中,抛物线与轴交于、两点(点在点的左侧),与轴
5、交于点(1)求、两点的坐标;(2)连接,点为直线上方抛物线上(不与、重合)的一动点,过点作交于点,轴交于点,求的最大值及此时点的坐标;(3)如图2,将原抛物线沿射线方向平移个单位得到新抛物线,点为新抛物线对称轴上一点,在新抛物线上是否存在一点,使以点、为顶点的四边形为平行四边形,若存在,请直接写出点的坐标,并选择一个你喜欢的点写出求解过程;若不存在,请说明理由2、鱼卷是泉州十大名小吃之一,不但本地人喜欢,还深受外来游客的赞赏小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户,当地的习俗是农历正月没有生产鱼卷,客户正月所需要的鱼卷都会在农历十二月底进行一次性采购2018年年底小张的“熟客
6、”们共向小张采购了5000箱鱼卷,到2020年底“熟客”们采购了7200箱(1)求小张的“熟客们这两年向小张采购鱼卷的年平均增长率;(2)2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的,由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若没有在网上出售鱼卷,则按去年的价格出售,每箱利润为15元,预计销售量与去年持平;若计划在网上出售鱼卷,则需把每箱售价下4至5元,且每下调1元销售量可增加1000箱,求小张在今年年底能获得的最大利润是多少元?3、在直角坐标系中,A的半径是2,圆心A的坐标为(1,0),A与x轴交于E、F两点,与y轴交于C、D两点,直线
7、BC与A交于点C,与x轴交于点B(3,0) 线 封 密 内 号学级年名姓 线 封 密 外 (1)求证:BC是A的切线;(2)若抛物线yax2bxc的顶点在直线BC上,与x轴的交点恰好为点 E、F,求抛物线的解析式;(3)在(2)的条件下,点M是抛物线对称轴上的一个动点,当ECM的周长最小时,请直接写出点M的坐标4、如图,在平面直角坐标系中,抛物线yx2+bx+c过点A(0,1),B(3,2)直线AB交x轴于点C(1)求抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一个动点连接PA、PC,当PAC的面积取得最大值时,求点P的坐标和PAC面积的最大值;(3)把抛物线yx2+bx+c沿射线A
8、B方向平移个单位形成新的抛物线,M是新抛物线上一点,并记新抛物线的顶点为点D,N是直线AD上一点,直接写出所有使得以点B,C,M,N为顶点的四边形是平行四边形的点M的坐标,并把求其中一个点M的坐标的过程写出来5、在平面直角坐标系中二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点(1)求A、B两点的坐标;(2)已知点D在二次函数的图象上,且点D和点C到x轴的距离相等,求点D的坐标-参考答案-一、单选题1、B【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案【详解】解:-18-2=-20,-18+2=-16,温度范围:-20至-16, 线 封 密 内 号学级年名
9、姓 线 封 密 外 故选:B【点睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度2、B【分析】分别写出各命题的逆命题,然后用相关知识判断真假.【详解】解:(1)“两直线平行,同位角相等”与“同位角相等,两直线平行”互为逆定理,正确;(2)命题“如果两个角相等,那么它们都是直角”的逆命题是“如果两个角都是直角,那么它们相等”,是真命题,故错误;(3)命题“如果-a=5,那么a=-5”的逆命题为“如果a=-5,那么-a=5”,故错误;正确的有1个,故选B.【点睛】本题主要考查命题的逆命题和命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题
10、的真假关键是要熟悉课本中的性质定理3、B【分析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到C=BOD,从而可对各选项进行判断【详解】解:直径CD弦AB,弧AD =弧BD,C=BOD故选B【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半4、A【详解】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=故选A点睛:此题主要考查了由实际问题抽象出分式方程,正确表
11、示出行驶的时间和速度是解题关键5、C【分析】结合有理数的相关概念即可求解【详解】解:A:的倒数是,不符合题意;B:的绝对值是2;不符合题意;C:,5的相反数是,符合题意;D:x取0时,;不符合题意 线 封 密 内 号学级年名姓 线 封 密 外 故答案是:C【点睛】本题主要考察有理数的相关概念,即倒数、绝对值及其性质、多重符号化简、相反数等,属于基础的概念理解题,难度不大解题的关键是掌握相关的概念6、A【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】解:17-(-2)=17+2=19故选A【点睛】本题考查有理数的减法,熟记减去一个数等于加上这个数的
12、相反数是解题的关键7、D【分析】根据有理数的混合运算计算即可;【详解】解:故选D【点睛】本题主要考查了含有乘方的有理数混合运算,准确计算是解题的关键8、A【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】“正”和“负”相对,如果零上2记作2,那么零下3记作3.故选A.9、B【分析】根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得BAO=CAD,然后求出BAC=,再根据等腰三角形两底角相等求出ABC,然后根据两直线平行,同旁内角互补表示出OBC,整理即可【详解】,在中,整理得,故选:B 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了
13、全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键10、D【解析】【分析】根据三角形面积公式列出不等式组,再解不等式组即可【详解】由题意得:,解得:4x6故选D【点睛】本题考查了一元一次不等式组的应用解题的关键是利用三角形的面积公式列出不等式组二、填空题1、【分析】根据两个负数比较大小,其绝对值大的反而小比较即可【详解】解: , , , 故答案为:【点睛】本题考查有理数的大小比较,能熟记有理数的大小比较的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小2、m=4【详解】
14、分析:若一元二次方程有实根,则根的判别式=b24ac0,建立关于m的不等式,求出m的取值范围还要注意二次项系数不为0详解:关于x的一元二次方程(m5)x2+2x+2=0有实根,=48(m5)0,且m50,解得m5.5,且m5,则m的最大整数解是m=4故答案为m=4点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式的关系:(1)0,方程有两个不相等的实数根;(2)=0,方程有两个相等的实数根;(3)0方程没有实数根3、【分析】根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解【详解】如图,连接CO,AB=BC,CD=DE,BOC+COD=AOB+DOE90,A
15、E=4,AO=2,S阴影 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了扇形的面积计算及圆心角、弧之间的关系解答本题的关键是得出阴影部分的面积等于扇形BOD的面积4、【分析】首先利用锐角三角函数关系得出AC的长,再利用平移的性质得出地毯的长度【详解】由题意可得:tan27=0.51,解得:AC3.9,故AC+BC=3.9+2=5.9(m),即地毯的长度至少需要5.9米故答案为5.9【点睛】本题主要考查了解直角三角形的应用,得出AC的长是解题的关键5、【分析】分别利用直线的性质以及线段的性质和相反数、绝对值的性质分别分析得出答案【详解】两点确定一条直线,正确;两点之间直线最短,
16、错误,应为两点之间线段最短;若,则,故错误;若a,b互为相反数,则a,b的商等于(a,b不等于0),故错误故答案为:.【点睛】此题主要考查了直线的性质以及线段的性质和相反数、绝对值,正确掌握相关定义是解题关键三、解答题1、(1),;(2),(3)或【分析】(1)分别令和即可求出函数图象与坐标轴相应的交点坐标;(2)运用待定系数法求出直线AC的解析式,设,求出,证明可求出,得,根据二次函数的性质可得结论;(3)在射线CB上取一点Q,使,过点Q作轴于点G,证明得,根据平行四边形的性质和平移的性质分两种情况求解即可(1)在中,令, 线 封 密 内 号学级年名姓 线 封 密 外 ,令,即解得,(2)设
17、直线AC的解析式为把两点的坐标分别代入中,得,解得,直线AC的解析式为:点为直线上方抛物线上(不与A、重合)的一动点,设轴,/y轴,即,当时,有最大值,的最大值为当时, 线 封 密 内 号学级年名姓 线 封 密 外 此时,(3)在射线CB上取一点Q,使,过点Q作轴于点G,则,如图,即将抛物线沿射线CB方向平移个单位得到新抛物线 相当于抛物线y=先向右平移3个单位,再向下平移个单位新抛物线的对称轴为x=2,点M为新抛物线对称轴上一点点M的横坐标为2当四边形ACMN为平行四边形时,如图,根据平行四边形的性质可知,AC/NM,AC=NM由图可知,将点C先向右平移2个单位,再向下平移若干个单位得到点M
18、,将点先向右平移2个单位,再向下平移若干个单位得到点N, 线 封 密 内 号学级年名姓 线 封 密 外 点N的横坐标为:当时,此时,点N的坐标为将点先向右平移2个单位,再向下平移个单位得到点,将点先向右平移2个单位,再向下平移个单位得到点M,此时点M的坐标为当四边形ACNM为平行四边形时,如图根据平行四边形的性质可知,AC/MN,AC=MN由嵊可知,将点先向右平移5个单位,再向下平移若干个单位得到点M,将点先向右平移5个单位,再向下平移若干个单位得到点N,点N的横坐标为当时,此时点N的坐标为将点先向右平移5个单位,再向下平移个单位得到点,此时点M的坐标为综上所述,点M的坐标为:或【点睛】本题主
19、要考查了二次函数与坐标轴的交点,二次函数的平移和对称轴、一次函数的解析式等知识点要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系2、(1)(2)小张在今年年底能获得的最大利润是元.【分析】(1)设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为则可得方程再解方程即可得到答案;(2)先求解今年的总的销量为箱,设今年总利润为元,价格下调元,则可建立二次函数为,再利用二次函数的性质求解最大值即可.(1)解:设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为 则 线 封 密 内 号学级年名姓 线 封 密 外 整理得: 解得:(负根不合题意
20、舍去)答:小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为(2)解: 2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的, 2020年小张年总销量为:(箱),设今年总利润为元,价格下调元,则 令 则 所以抛物线的对称轴为: 所以函数有最大值, 当时,(元),所以小张在今年年底能获得的最大利润是元.【点睛】本题考查的是一元二次方程的应用,二次函数的应用,掌握“确定相等关系建立一元二次方程,建立二次函数模型”是解本题的关键.3、(1)见解析(2)(3)【分析】(1)连接,由AB2BC2+AC2,即可求解;(2)求出抛物线顶点坐标为(1,),将点E的坐标代入抛物线表达式,即可求解;(
21、3)由题意知,EC的长度不变,点M在抛物线的对称轴上,连接CF交对称轴于点M,此时ECM的周长最短,进而求解(1)证明:连接,的半径为2,则,由点A、B的坐标知,则,在中,由勾股定理得:,在中,则, 线 封 密 内 号学级年名姓 线 封 密 外 ,半径为的切线;(2)设BC的解析式为,把点B(-3,0)、C(0,)的坐标代入得,解得,直线的解析式为;由题意得,与x轴的交点分别为、,则抛物线的对称轴为过点A的直线抛物线的顶点在直线上,当时,抛物线顶点坐标为设抛物线解析式为,抛物线过点,解得抛物线的解析式为;(3)由题意知,的长度不变,点M在抛物线的对称轴上,当C、M、F在同一条直线上时,最小;连
22、接交对称轴于点M,此时的周长最短,设直线的表达式为,则,解得,直线的表达式为,当时,故点M的坐标为【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题是二次函数综合题,主要考查了一次函数的性质、圆切线的知识、点的对称性等,解题关键是熟练运切线的判定和二次函数的性质进行推理计算4、(1)(2),(3)或,或,【分析】(1)先由抛物线过点求出的值,再由抛物线经过点求出的值即可;(2)作轴,交直线于点,作于点,设直线的函数表达式为,由直线经过点求出直线的函数表示式,设,则,可证明,于是可以用含的代数式表示、的长,再将的面积用含的代数式表示,根据二次函数的性质即可求出的面积的最大值及点的坐标;
23、(3)先由沿射线方向平移个单位相当于向右平移1个单位,再向上平移1个单位,说明抛物线沿射线方向平移个单位也相当于向右平移1个单位,再向上平移1个单位,根据平移的性质求出新抛物线的函数表达式,再按以为对角线或以为一边构成平行四边形分类讨论,求出点的坐标【小题1】解:抛物线过点,抛物线经过点,解得,抛物线的函数表达式为【小题2】如图1,作轴,交直线于点,作于点,则,设直线的函数表达式为,则,解得,直线的函数表达式为,当时,则,解得,轴, 线 封 密 内 号学级年名姓 线 封 密 外 ,设,则,当时,此时,点的坐标为,面积的最大值为【小题3】如图2,将沿射线方向平移个单位,则点的对应点与点重合,得到
24、,相当于向右平移1个单位,再向上平移1个单位,抛物线沿射线方向平移个单位也相当于向右平移1个单位,再向上平移1个单位,平移后得到的抛物线的函数表达式为,即,它的顶点为,轴,设直线与抛物线交于点,由平移得,为的中点,当以,为顶点平行四边形以为对角线时,设抛物线交轴于点,作直线交轴于点,当时,延长交轴于点,则, 线 封 密 内 号学级年名姓 线 封 密 外 ,四边形是平行四边形,是以,为顶点平行四边形的顶点;若点与点重合,点与点重合,也满足,但此时点、在同一条直线上,构不成以点、为顶点平行四边形;如图3,以,为顶点的平行四边形以为一边,抛物线,当时,则,解得,抛物线经过点,设抛物线与轴的另一个交点
25、为,则,作于点,连接,则轴,点的纵坐标为1,当时,则,解得,点的坐标为,或,综上所述,点的坐标为或,或,【点睛】此题重点考查二次函数的图象与性质、一次函数的图象与性质、全等三角形的判定与性质、平行四边形的判定、勾股定理、解一元二次方程等知识与方法,解题时应注意数形结合、分类讨论等数学思想的运用5、(1)A(1,0),B(5,0)(2)(6,5)【分析】(1)先将点C的坐标代入解析式,求得a;然后令y=0,求得x的值即可确定A、B的坐标;(2)由可知该抛物线的顶点坐标为(3,-4),又点D和点C到x轴的距离相等,则点D在x轴的上方,设D的坐标为(d,5),然后代入解析式求出d即可(1)解:二次函数的图象与y轴交于 线 封 密 内 号学级年名姓 线 封 密 外 ,解得a=1二次函数的解析式为二次函数的图象与x轴交于A、B两点令y=0,即,解得x=1或x=5点A在点B的左侧A(1,0),B(5,0)(2)解:由(1)得函数解析式为抛物线的顶点为(3,-4)点D和点C到x轴的距离相等,即为5点D在x轴的上方,设D的坐标为(d,5),解得d=6或d=0点D的坐标为(6,5)【点睛】本题主要考查了二次函数与坐标轴的交点、二次函数抛物线的顶点、点到坐标轴的距离等知识点,灵活运用相关知识成为解答本题的关键