《2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数同步测试试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数同步测试试题(含解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版(上海)七年级数学第二学期第十二章实数同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各数是无理数的是( )A3BC2.121121112D2、观察下列算式:212,224,238,24
2、16,2532,2664,27128,28256,根据上述算式中的规律,你认为2810的末位数字是()A2B4C8D63、的算术平方根是( )ABCD4、10的算术平方根是( )A10BCD5、已知2m1和5m是a的平方根,a是( )A9B81C9或81D26、在下列四个选项中,数值最接近的是( )A2B3C4D57、64的立方根为( )A2B4C8D28、在, 0, , , 0.010010001, , 0.333, , 3.1415,2.010101(相邻两个1之间有1个0)中,无理数有( )A2个B3个C4个D5个9、可以表示( )A0.2的平方根B的算术平方根C0.2的负的平方根D的立
3、方根10、估计的值在( )A5到6之间B6到7之间C7到8之间D8到9之间第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若a、b为实数,且,则ab的值_2、如果一个正数的平方根为2a1和4a,这个正数为_3、比较大小:_3(填“”、“”或“”)4、在实数范围内因式分解:y22y1_5、0.064的立方根是_三、解答题(10小题,每小题5分,共计50分)1、计算:(1); (2)2、计算:(1)18+(17)+7+(8);(2)(12);(3)22+|1|+3、计算:(1);(2)4、(1)计算:;(2)分解因式:5、(1)计算:;(2)计算:(2x2)2+x3xx5x
4、;(3)先化简再求值:2(a+2)24(a+3)(a3)+3(a1)2,其中a16、计算:7、观察下列等式:第1个等式:1213;第2个等式:(1+2)213+23;第3个等式:(1+2+3)213+23+33;第4个等式:(1+2+3+4)213+23+33+43;按照以上规律,解决下列问题:(1)写出第5个等式:_;(2)写出第n(n为正整数)个等式:_(用含n的等式表示);(3)利用上述规律求值:8、求下列各式中x的值(1)(x3)34(2)9(x2)2169、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b9)20,c1(1)a ,b ;(2)点P为
5、数轴上一动点,其对应的数为x,则当x 时,代数式|xa|xb|取得最大值,最大值为 ;(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍?10、我们知道,假分数可以化为整数与真分数的和的形式例如:=1+ 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”例如:像,这样的分式是假分式;像,这样的分式是真分式类似的,假分式也可以化为整式与真
6、分式的和的形式 例如:;解决下列问题:(1)写出一个假分式为: ;(2)将分式化为整式与真分式的和的形式为: ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值-参考答案-一、单选题1、D【分析】根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可【详解】A、-3是整数,属于有理数B、是分数,属于有理数C、2.121121112是有限小数,属于有理数D、是无限不循环小数,属于无理数故选:D【点睛】本题主要是考察无理数的概念,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112,等有规律的数2、B【分析】经过观察如果2的次数
7、除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6用81042022,余数是2故可知,末尾数是4【详解】2n的个位数字是2,4,8,6循环,所以81042022,则2810的末位数字是4故选:B【点睛】本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键3、A【分析】根据算术平方根的定义即可完成【详解】 的算术平方根是 即 故选:A【点睛】本题考查了算术平方根的计算,掌握算术平方根的定义是关键4、B【分析】直接利用算术平方根的求法即可求解【详解】解:的算术平方根是,故选:B【点睛】本题主要考查了算术平方根,解
8、题的关键是掌握求解的运算法则5、C【分析】分两种情况讨论求解:当2m1与5m是a的两个不同的平方根和当2m1与5m是a的同一个平方根【详解】解:若2m1与5m互为相反数,则2m1+5m0,m4,5m5(4)9,a9281,若2m15m,m2,5m523,a329,故选C【点睛】本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解6、A【分析】根据无理数的估算先判断,进而根据,进而可以判断,即可求得答案【详解】解:,即更接近2故选A【点睛】本题考查了无理数的估算,掌握无理数的估算是解题的关键7、B【分析】根据立方根的定义进行计算即可【详解】解:43=64,实数64的立方根是,故选
9、:B【点睛】本题考查立方根,理解立方根的定义是正确解答的关键8、C【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:=1,=2,,3,无理数有,2.010101(相邻两个1之间有1个0)共4个故选:C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001,等有这样规律的数9、C【分析】根据平方根和算术平方根的定义解答即可【详解】解:可以表示0.2的负的平方根,故选:C【点睛】此题考查了算术平方
10、根和平方根解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数10、C【分析】将根号部分平方后得44即可看出,由此可判断其在6到7之间,再利用不等式的性质进行求解判断即可【详解】,故选:C【点睛】本题考查二次根式的估值,关键在于利用平方法找到其大概的取值范围二、填空题1、3【分析】根据平方的非负性及算术平方根的非负性求出a及b的值,代入计算即可【详解】解:,=3,故答案为:3【点睛】此题考查了平方的非负性及算术平方根的非负性,以及实数的乘方运算,正确掌握平方的非负性及算术平方根的非负性是解题的关键2、49【分析】根据平方根的定义得到与互
11、为相反数,列出关于的方程,求出方程的解得到的值,即可确定出这个正数【详解】根据题意得:,解得:,则这个正数为49故答案为:49【点睛】此题考查了平方根,熟练掌握平方根的定义是解本题的关键3、【分析】由得,再利用不等式的基本性质可得,从而可得答案【详解】解:,故答案为:【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键4、(y1)(y1)【分析】变形整式为y22y12,前三项利用完全平方公式,再利用平方差公式因式分解【详解】解:y22y1y22y12(y1)2()2(y1)(y1)故答案为:(y1)(y1)【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法
12、是解题的关键5、0.4【分析】根据立方根的定义直接求解即可【详解】解:,0.064的立方根是0.4故答案为:0.4【点睛】本题考查了立方根,解决本题的关键是熟记立方根的定义三、解答题1、(1)1;(2)2【分析】(1)根据零指数幂定义,负整数指数幂定义及绝对值的性质分别化简,再计算加减法;(2)根据同分母分式的加减法法则计算【详解】解:(1)原式122 1(2)原式 2【点睛】此题考查了计算能力:实数的混合运算,同分母分式的加减法,正确掌握零指数幂定义,负整数指数幂定义,绝对值的性质,同分母分式的加减法法则是解题的关键2、(1)0;(2)1;(3)【分析】(1)根据有理数的加法计算法则求解即可
13、;(2)根据有理数的乘法分配律求解即可;(3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可【详解】解:(1) ;(2);(3)【点睛】本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键3、(1);(2).【分析】(1)由题意利用算术平方根和立方根的性质进行化简计算即可;(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.【详解】解:(1)(2)【点睛】本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.4、(1);(2)【分析】(1)先计算乘方运算,求解算术平方根,化简绝对值,再合并即可
14、;(2)提取公因式即可.【详解】解:(1)解:原式(2)解:原式【点睛】本题考查的是立方根的含义,绝对值的化简,实数的运算,提公因式法分解因式,掌握“实数的运算及提公因式分解因式”是解本题的关键.5、(1)8;(2)4x4;(3)a2+2a+47,46【分析】(1)首先根据算术平方根,立方根和绝对值的性质化简,然后利用有理数的加减混合运算法则求解即可;(2)先算乘方,再算乘除,然后合并同类项求解即可;(3)先根据整式的乘法运算法则化简,然后合并同类项,最后代入求解即可【详解】解:(1)原式92(1)7+18;(2)原式4x4+x4x44x4;(3)原式2(a2+4a+4)4(a29)+3(a2
15、2a+1)2a2+8a+84a2+36+3a26a+3a2+2a+47,当a1时,原式(1)2+2(1)+4712+4746【点睛】此题考查了算数平方根,立方根和绝对值的意义,积的乘方运算,同底数幂的乘法和除法运算,整式的乘法运算公式,合并同类项等知识,解题的关键是熟练掌握以上运算的法则6、1【分析】直接利用零指数幂的性质以及立方根的性质、负整数指数幂的性质、有理数的乘方运算法则分别化简,再利用有理数的加减运算法则计算得出答案【详解】解:1+3211【点睛】本题主要考查了实数的混合运算,熟练掌握相关运算法则是解答本题的关键7、(1)(1+2+3+4+5)213+23+33+43+53;(2)(
16、1+2+3+4+5+n)213+23+33+43+53+n3;(3)265【分析】(1)根据前几个等式的变化规律解答即可;(2)根据前几个等式的变化规律写出第n个等式即可;(3)根据变化规律和平方差公式进行计算即可(1)解:根据题意,第5个等式为(1+2+3+4+5)213+23+33+43+53,故答案为:(1+2+3+4+5)213+23+33+43+53;(2)解:根据题意,第n个等式为(1+2+3+4+5+n)213+23+33+43+53+n3,故答案为:(1+2+3+4+5+n)213+23+33+43+53+n3;(3)解:由(2)中(1+2+3+4+5+n)213+23+33+
17、43+53+n3知,(1+2+3+4+5+20)213+23+33+43+53+203,(1+2+3+4+5+10)213+23+33+43+53+103,得:(1+2+3+4+5+20+1+2+3+4+5+10)(11+12+13+20)=113+123+133+203,=(1+2+3+4+5+20+1+2+3+4+5+10)=265【点睛】本题考查数字类规律探究、平方差公式、与实数运算相关的规律题,理解题意,正确得出等式的变化规律并能灵活运用是解答的关键8、(1)x=5;(2)x=-或x=【分析】(1)把x-3可做一个整体求出其立方根,进而求出x的值;(2)把x+2可做一个整体求出其平方根
18、,进而求出x的值【详解】解:(1) (x3)34,(x-3)3=8,x-3=2,x=5;(2)9(x+2)2=16,(x+2)2=,x+2=,x=-或x=【点睛】本题考查了立方根和平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根9、(1)3,9;(2)9,12;(3)秒或秒【分析】(1)由|a+3|+(b9)20,根据非负数的性质得|a+3|0,(b9)20,即可求出a3、b9;(2)由(1)得a3、b9,则代数式|xa|xb|即代数式|x+3|x9|,按x3、3x9及x9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;(3)先由点C表示的数
19、是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可【详解】解:(1)|a+3|0,(b9)20,且|a+3|+(b9)20,|a+3|0,(b9)20,a3,b9,故答案为:3,9(2)a3,b9,代数式|xa|xb|即代数式|x+3|x9|,当x3时,|x+3|x9|(x+3)(9x)12;当3x9时,|x+3|x9|x+3(9x)2x6,122x612,12|x+3|x9|12;当x9时,|x+3|x9|x+3(x9)12,综上所述,|x+3|x9|的最大值为12,故答案为:9,12(3)点C表示的数是1,点B表示的数是9,B
20、、C两点之间的距离是918,当点Q与点C重合时,则2t8,解得t4,当0t4时,如图1,点P表示的数是3t,点Q表示的数是92t,根据题意得92t(3t)22t,解得t;当4t8时,如图2,点P表示的数仍是3t,1+(2t8)2t7,点Q表示的数是2t7,根据题意得2t7(3t)2(162t),解得t,综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍【点睛】本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键10、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案(2)根据题意给出的变形方法即可求出答案(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一) (2); 故答案为:;(3),x2=1或x2=2,x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型