《2021-2022学年最新沪科版九年级数学下册期末专项测评-卷(Ⅰ)(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新沪科版九年级数学下册期末专项测评-卷(Ⅰ)(精选).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版九年级数学下册期末专项测评 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,与相切于点,连接交于点,点为优弧上一点,连接,若,的半径,则的
2、长为( )A4BCD12、如图,在中,将绕原点O逆时针旋转90,则旋转后点A的对应点的坐标是( )ABCD3、如图,ABCD是正方形,CDE绕点C逆时针方向旋转90后能与CBF重合,那么CEF是()A.等腰三角形B等边三角形C.直角三角形D.等腰直角三角形4、下列判断正确的是( )A明天太阳从东方升起是随机事件;B购买一张彩票中奖是必然事件;C掷一枚骰子,向上一面的点数是6是不可能事件;D任意画一个三角形,其内角和是360是不可能事件;5、下列事件是确定事件的是( )A方程有实数根B买一张体育彩票中大奖C抛掷一枚硬币正面朝上D上海明天下雨6、如图,在RtABC中,ACB90,A30,BC2将A
3、BC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( ) 线 封 密 内 号学级年名姓 线 封 密 外 A3B1CD7、平面直角坐标系中点关于原点对称的点的坐标是( )ABCD8、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作O,O与AB,AE分别相切于点G,H,连接FG,GH则下列结论错误的是( )AB四边形EFGH是菱形CD9、如图,正五边形ABCDE内接于O,则CBD的度数是()A30B36C60D7210、在中,给出条件:;外接
4、圆半径为4请在给出的3个条件中选取一个,使得BC的长唯一可以选取的是( )ABCD或第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是_2、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红黑的概率是_3、在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是 _4、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为_5、点(2,-3)关于原点的对称点
5、的坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,的直径cm,AM和BN是它的切线,DE与相切于点E,并与AM,BN分别相交于D,C两点设,求y关于x的函数解析式 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,内接于,BC是的直径,D是AC延长线上一点(1)请用尺规完成基本作图:作出的角平分线交于点P(保留作图痕迹,不写作法)(2)在(1)所作的图形中,过点P作,垂足为E则PE与有怎样的位置关系?请说明理由3、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半
6、径和圆心A的坐标元元的做法如下,请你帮忙补全解题过程:解:如图2,连接BC作AELOB于E、AFOC于F、(依据是 ),(依据是 ),BC是的直径(依据是 ),A的坐标为( )的半径为 4、在平面直角坐标系中,的三个顶点坐标分别为(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到(请将20题(1)(2)小问的图都作在所给图中)5、太原是国家历史文化名城,有很多旅游的好去处,周末哥哥计划带弟弟出去玩,放假前他收集了太原动物园、晋祠公园、森林公园、汾河湿地公园四个景点的旅游宣传卡片,
7、这些卡片的大小、形状及背面完全相同,分别用D,J,S,F表示,如图所示,请用列表或画树状图的方法,求下列事件发生的概率 线 封 密 内 号学级年名姓 线 封 密 外 (1)把这四张卡片背面朝上洗匀后,弟弟从中随机抽取一张,作好记录后,将卡片放回洗匀,哥哥再抽取一张,求两人抽到同一景点的概率;(2)把这四张卡片背面朝上洗匀后,弟弟和哥哥从中各随机抽取一张(不放回),求两人抽到动物园和森林公园的概率-参考答案-一、单选题1、B【分析】连接OB,根据切线性质得ABO=90,再根据圆周角定理求得AOB=60,进而求得A=30,然后根据含30角的直角三角形的性质解答即可【详解】解:连接OB,AB与相切于
8、点B,ABO=90,BDC=30,AOB=2BDC=60,在RtABO中,A=9060=30,OB=OC=2,OA=2OB=4,故选:B【点睛】本题考查切线的性质、圆周角定理、直角三角形的锐角互余、含30角的直角三角形性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键2、C【分析】过点A作ACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到 ,可得到点 ,再根据旋转的性质,即可求解【详解】解:如图,过点A作ACx轴于点C, 线 封 密 内 号学级年名姓 线 封 密 外 设 ,则 , , , ,解得: , , ,点 ,将绕原点O顺时针旋转90,则旋转后点A的对应点的坐标是,
9、将绕原点O逆时针旋转90,则旋转后点A的对应点的坐标是故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型3、D【分析】根据旋转的性质推出相等的边CECF,旋转角推出ECF90,即可得到CEF为等腰直角三角形【详解】解:CDE绕点C逆时针方向旋转90后能与CBF重合,ECF90,CECF,CEF是等腰直角三角形,故选:D【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键4、D【详解】解:A、明天太阳从东方升起是必然事件,故本选项错误,不符合题意;B、购买一张彩票中奖是随机事件,故本选项错误,不符合题意;C、
10、掷一枚骰子,向上一面的点数是6是随机事件,故本选项错误,不符合题意;D、任意画一个三角形,其内角和是360是不可能事件,故本选项正确,符合题意;故选:D【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键5、A【分析】随机事件:是指在一定条件下可能发生也可能不发生的事件,根据随机事件的分类对各个选项逐个分析,即可得到答案【详解】解:方程无实数根,因此“方程有实数”是不可能事件,所以选项符合题意;B买一张体育彩票可能中大奖,有可能不中,因此是随机事件,所以选项B不符合题意; 线 封
11、密 内 号学级年名姓 线 封 密 外 C抛掷一枚硬币,可能正面朝上,有可能反面朝上,因此是随机事件,所以选项C不符合题意;D上海明天可能下雨,有可能不下雨,因此是随机事件,所以选项D不符合题意;故选:【点睛】本题考查的是确定事件与随机事件的概念,掌握确定事件分为必然事件,不可能事件,及随机事件的概念是解题的关键6、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性
12、质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键7、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键8、C【分析】由折叠可得DAE=FAE,D=AFE=90,EF=ED,再根据切线长定理得到AG=AH,GAF=HAF,进而求出GAF=HAF=DAE=30,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是 线 封 密 内 号学级年名姓 线 封 密 外 O的切线,ANE是等边三角形,证
13、明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,C=90,FEC=60,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,GAF=HAF,得出GHAO,不难判断D【详解】解:由折叠可得DAE=FAE,D=AFE=90,EF=ED.AB和AE都是O的切线,点G、H分别是切点,AG=AH,GAF=HAF,GAF=HAF=DAE=30,BAE=2DAE,故A正确,不符合题意;延长EF与AB交于点N,如图:OFEF,OF是O的半径,EF是O的切线,HE=EF,NF=NG,ANE是等边三角形,FG/HE,FG=HE,AEF=60,四边形EFGH是平行四边形,FEC
14、=60,又HE=EF,四边形EFGH是菱形,故B正确,不符合题意;AG=AH,GAF=HAF,GHAO,故D正确,不符合题意;在RtEFC中,C=90,FEC=60,EFC=30,EF=2CE,DE=2CE.在RtADE中,AED=60,AD=DE,AD=2CE,故C错误,符合题意.故选C.【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键9、B【分析】求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可【详解】解:正五边形ABCDE
15、中,BCD=108,CB=CD, 线 封 密 内 号学级年名姓 线 封 密 外 CBD=CDB=(180-108)=36,故选:B【点睛】本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键10、B【分析】画出图形,作,交BE于点D根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意【详解】如图,点C在射线上作,交BE于点D,为等腰直角三角形,不存在的三角形ABC,故不符合题意;,A
16、C=8,而AC6,存在的唯一三角形ABC,如图,点C即是,使得BC的长唯一成立,故符合题意;,存在两个点C使的外接圆的半径等于4,两个外接圆圆心分别在AB的上、下两侧,如图,点和即为使的外接圆的半径等于4的点故不符合题意故选B【点睛】本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质利用数形结合的思想是解答本题的关键二、填空题1、【分析】 线 封 密 内 号学级年名姓 线 封 密 外 绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解【详解】解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐
17、标是故答案为:【点睛】本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键关于原点对称的两个点,横坐标、纵坐标分别互为相反数2、【分析】根据题意列出表格,可得6种等可能结果,其中一红黑的有4种,再利用概率公式,即可求解【详解】解:根据题意列出表格如下:黑球红球1红球2黑球红球1、黑球红球2、黑球红球1黑球、红球1红球2、红球1红球2黑球、红球2红球1、红球2得到6种等可能结果,其中一红黑的有4种,所以两次摸出的球是一红黑的概率是 故答案为:【点睛】本题主要考查了求概率,能够利用画树状图或列表格的方法解答是解题的关键3、【分析】由题意可知,共有12个球,取
18、到每个球的机会均等,根据概率公式解题【详解】解:P(红球)=故答案为:【点睛】本题考查简单事件的概率,是基础考点,掌握相关知识是解题关键4、【分析】连接OC交AB于点D,再连接OA根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度【详解】解:如下图所示,连接OC交AB于点D,再连接OA折叠后弧的中点与圆心重叠,OD=CD 线 封 密 内 号学级年名姓 线 封 密 外 AD=BD圆形纸片的半径为10cm,OA=OC=10cmOD=5cmcmBD=cmcm故答案为:【点睛】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点
19、是解题关键5、 (-2,3)【分析】根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即可求解【详解】点(2,-3)关于原点的对称点的坐标是(-2,3) 故答案为:(-2,3)【点睛】本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系三、解答题1、【分析】连接OC,OD,OE,根据切线的性质得到cm,推出,根据,列得,从而求出函数解析式【详解】解:连接OC,OD,OE,AD切于点A,CB切于点B,CD切于点E,直径cmcm, 【点睛】此题考查了圆的切线的性质定理,全等三角形的判定及性质定理,求函数解析式,正确连线利用切线的性质是解题的关键2、(1)作
20、图见解析(2)是的切线,理由见解析【分析】(1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点 线 封 密 内 号学级年名姓 线 封 密 外 为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点(2)如图2所示,连接,由题意可知,;在四边形中,求出,得出,由于是半径,故有是的切线(1)解:如图1所示(2)解:是的切线如图2所示,连接由题意可知,在四边形中又是半径是的切线【点睛】本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点解题的关键在于将知识综合灵活运用3、垂径定理,圆周角定理,圆周角定理,(1,),2【分析】根据垂径定理,圆周角定理依次分析解答
21、【详解】解:如图2,连接BC作AEOB于E、AFOC于F、(依据是垂径定理),(依据是圆周角定理), 线 封 密 内 号学级年名姓 线 封 密 外 BC是的直径(依据是圆周角定理),A的坐标为(1,),的半径为2,故答案为:垂径定理,圆周角定理,圆周角定理,(1,),2【点睛】此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键4、(1)见解析,;(2)见解析,(3)绕点O顺时针时针旋转【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,
22、即可求解(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到【点睛】本题主要考查了图形的变换画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键5、(1);(2).【分析】(1)根据题意列表可得共有16种等可能的结果,其中两人抽到同一景点的结果有4种,进而由概率公式求解即可;(2)根据题意列表可得共有12种等可能的结果,其中两人抽到动物园和森林公园的结果有2种,进而由概率公式求解即可【详解】解:(1)列表如下:DJS
23、FD(D,D)(J,D)(S,D)(F,D) 线 封 密 内 号学级年名姓 线 封 密 外 J(D,J)(J,J)(S,J)(F,J)S(D,S)(J,S)(S,S)(F,S)F(D,F)(J,F)(S,F)(F,F)所有等可能的情况数为16种,两人抽到同一景点的结果有4种,所以两人抽到同一景点的概率为.(2)列表如下:DJSFD(J,D)(S,D)(F,D)J(D,J)(S,J)(F,J)S(D,S)(J,S)(F,S)F(D,F)(J,F)(S,F)所有等可能的情况数为12种,其中两人抽到动物园和森林公园的结果有2种,所以两人抽到动物园和森林公园的概率为.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率