2021-2022学年度强化训练京改版八年级数学下册第十五章四边形章节测试试题(含详细解析).docx

上传人:知****量 文档编号:28170878 上传时间:2022-07-26 格式:DOCX 页数:26 大小:727.89KB
返回 下载 相关 举报
2021-2022学年度强化训练京改版八年级数学下册第十五章四边形章节测试试题(含详细解析).docx_第1页
第1页 / 共26页
2021-2022学年度强化训练京改版八年级数学下册第十五章四边形章节测试试题(含详细解析).docx_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《2021-2022学年度强化训练京改版八年级数学下册第十五章四边形章节测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练京改版八年级数学下册第十五章四边形章节测试试题(含详细解析).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十五章四边形章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,可以看作是中心对称图形的是( )ABCD2、如图,已知在正方形ABCD中,厘米,点E在边AB上,且厘米

2、,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒若存在a与t的值,使与全等时,则t的值为( )A2B2或1.5C2.5D2.5或23、下面图案中既是轴对称图形又是中心对称图形的是()ABCD4、下列图案中既是轴对称图形又是中心对称图形的是( )ABCD5、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形6、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD7、如图,在平面直角坐标系中,点A是x轴

3、正半轴上的一个动点,点C是y轴正半轴上的点,于点C已知,点B到原点的最大距离为( )A22B18C14D108、如图,四边形ABCD是平行四边形,下列结论中错误的是( )A当ABCD是矩形时,ABC90B当ABCD是菱形时,ACBDC当ABCD是正方形时,ACBDD当ABCD是菱形时,ABAC9、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )A46.5cmB22.5cmC23.25cmD以上都不对10、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致下列窗户图案中,

4、是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点D、E分别是ABC边AB、AC的中点,已知BC12,则DE_2、已知长方形ABCD中,AB4,BC10,M为BC中点,P为AD上的动点,则以B、M、P为顶点组成的等腰三角形的底边长是_3、如果一个矩形较短的边长为5cm,两条对角线的夹角为60,则这个矩形的对角线长是_cm4、如图,在菱形纸片ABCD中,AB2,A60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cosEFG的值为_5、若正边形的每个内角都等于120,则这个正边形的边数为_三、解答题

5、(5小题,每小题10分,共计50分)1、如图,ABC中,点D是边AC的中点,过D作直线PQBC,BCA的平分线交直线PQ于点E,点G是ABC的边BC延长线上的点,ACG的平分线交直线PQ于点F求证:四边形AECF是矩形2、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影(1)请在下面三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);(2)在两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同)3、(3)点P为AC上一动点,则PE+PF最小值为4、如图1,

6、在平面直角坐标系中,直线y2x8与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C(1)写出C点坐标 ;(2)若M为线段BC上一点,且满足SAMB SAOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴正半轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求出点G的坐标5、“三等分一个任意角”是数学史上一个著名问题今天人们已经知道,仅用圆规和直尺是不可能作出的有人曾利用如图所示的图形进行探索,其中ABCD是长方形,F是DA延长线上一点,G是CF上一点,且ACGAGC,GAFF请写出ECB和ACB的数量

7、关系,并说明理由-参考答案-一、单选题1、A【分析】根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可【详解】解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,A选项是中心对称图形故本选项正确故选:A【点睛】本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键2、D【分析】根据题意分两种情况讨论若BPECQP,则BP=CQ,BE=CP;若BPECPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若BPECQP,则B

8、P=CQ,BE=CP,AB=BC=10厘米,AE=4厘米,BE=CP=6厘米,BP=10-6=4厘米,运动时间t=42=2(秒);当,即点Q的运动速度与点P的运动速度不相等,BPCQ,B=C=90,要使BPE与OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可点P,Q运动的时间t=(秒).综上t的值为2.5或2.故选:D【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等同时要注意分类思想的运用3、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】A不是轴对称图形,也不是中心对称

9、图形,故此选项不合题意;B是轴对称图形,不是中心对称图形,故此选项不合题意;C不是轴对称图形,是中心对称图形,故此选项不合题意;D既是轴对称图形又是中心对称图形,故此选项符合题意故选:D【点睛】本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键4、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不

10、是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形5、B【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行

11、四边形是菱形;对角线垂直的平行四边形是菱形6、D【分析】根据轴对称图形与中心对称图形的概念求解即可【详解】解:A是轴对称图形,不是中心对称图形,故此选项不合题意;B是轴对称图形,不是中心对称图形,故此选项不合题意;C是轴对称图形,不是中心对称图形,故此选项符合题意;D是轴对称图形,也是中心对称图形,故此选项不合题意故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形7、B【分析】首

12、先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离【详解】解:取AC的中点E,连接BE,OE,OB,AOC90,AC16,OECEAC8,BCAC,BC6,BE10,若点O,E,B不在一条直线上,则OBOE+BE18若点O,E,B在一条直线上,则OBOE+BE18,当O,E,B三点在一条直线上时,OB取得最大值,最大值为18故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用8、D【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方

13、形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当ABCD是矩形时,ABC90,正确,故A不符合题意;当ABCD是菱形时,ACBD,正确,故B不符合题意;当ABCD是正方形时,ACBD,正确,故C不符合题意;当ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.9、C【分析】如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,则,即可得到DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可【详解】解:如图所示,DE,DF,E

14、F分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,DEF的周长,同理可得:GHI的周长,第三次作中位线得到的三角形周长为,第四次作中位线得到的三角形周长为第三次作中位线得到的三角形周长为这五个新三角形的周长之和为,故选C【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理10、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了中心对称图形的识别,解

15、题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心二、填空题1、6【分析】根据三角形的中位线等于第三边的一半进行计算即可【详解】解:D、E分别是ABC边AB、AC的中点,DE是ABC的中位线,BC=12,DE=BC=6,故答案为6【点睛】本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键2、5或或【分析】分三种情况:当BP=PM时,点P在BM的垂直平分线上,取BM的中点N,过点N作NPBM交AD于P,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理即可求解;

16、当BM=PM=5时,当PMB为锐角如图2时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理可得MN=3,从而BN=2,再由勾股定理可得BP的长;当BM=PM=5时,当PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理MN=3,从而BN=8,再由勾股定理可得BP的长;即可求解【详解】解:BC10,M为BC中点,BM=5,当BMP为等腰三角形时,分三种情况:当BP=PM时,点P在AM的垂直平分线上,取BM的中点N,过点N作NPAD交AD于P,如图1所示:则PBM是等腰三角形底边BM的长为5当BM=PM=5时,当PMB为锐角如图2时,则四边形ABNP是矩形,PN=A

17、B=4,MN= 在RtPBN中,当BM=PM=5时,当PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,同理可得 在RtPBN中,综上,以B、M、P为顶点组成的等腰三角形的底边长是:5 或或故答案为:5 或或【点睛】本题考查了矩形的性质、勾股定理以及分类讨论等知识,熟练掌握矩形的性质,进行分类讨论是解题的关键3、10【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形, 是等边三角形, 故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.4、【分析】

18、根据题意连接BE,连接AE交FG于O,如图,利用菱形的性质得BDC为等边三角形,ADC=120,再在在RtBCE中计算出BE=CE=,然后证明BEAB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在RtBEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在RtAOF中利用勾股定理计算出OF,再利用余弦的定义求解即可【详解】解:连接BE,连接AE交FG于O,如图,四边形ABCD为菱形,A=60,BDC为等边三角形,ADC=120,E点为CD的中点,CE=DE=1,BECD,在RtBCE中,BE=CE=,ABCD,BEAB,设AF=x,菱形纸

19、片翻折,使点A落在CD的中点E处,FE=FA=x,BF=2-x,在RtBEF中,(2-x)2+()2=x2,解得:,在RtAOF中,故答案为: 【点睛】本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等5、6【分析】多边形的内角和可以表示成,因为所给多边形的每个内角均相等,故又可表示成,列方程可求解【详解】解:设所求正边形边数为,则,解得,故答案是:6【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理三、解答题1、见解析【分析】先根据平行线的性质得到

20、DECBCE,DFCGCF,再由角平分线的定义得到,则DECDCE,DFCDCF,推出DEDC,DFDC,则DEDF,再由ADCD,即可证明四边形AECF是平行四边形,再由ECFDCE+DCF,即可得证【详解】证明:PQBC,DECBCE,DFCGCF,CE平分BCA,CF平分ACG,DECDCE,DFCDCF,DEDC,DFDC,DEDF,点D是边AC的中点,ADCD,四边形AECF是平行四边形,BCA+ACG180,ECFDCE+DCF,平行四边形AECF是矩形【点睛】本题主要考查了矩形的判定,平行线的性质,角平分线的定义,等腰三角形的性质与判定,等等,熟练掌握矩形的判定条件是解题的关键2

21、、(1)见解析;(2)见解析【分析】(1)直接利用轴对称图形的性质得出符合题意的答案;(2)直接利用中心对称图形的性质得出符合题意的答案【详解】解:(1)如图所示:都是轴对称图形;(2)如图所示:都是中心对称图形【点睛】此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键3、见解析【分析】(1)根据折叠的性质可得:1=2,再由矩形的性质,可得2=3,从而得到1=3,即可求解;(2)设FD=x,则AF=CF=8-x,再由勾股定理,可得DF=3,从而得到CF=5,即可求解;(3)连接PB,根据折叠的性质可得ECPBCP,从而得到PE=PB,进而得到当点F、P、B三点共线时

22、,PE+PF最小,最小值为BF的长,再由勾股定理,即可求解【详解】(1)解:ACF是等腰三角形,理由如下:如图,由折叠可知,1=2,四边形ABCD是矩形,ABCD,2=3,1=3,AF=CF,ACF是等腰三角形;(2)四边形ABCD是矩形且AB=8,BC=4,AD=BC=4,CD=AB=8,D=90,设FD=x,则AF=CF=8-x,在RtAFD中,根据勾股定理得AD2+DF2=AF2,42+x2=(8-x)2,解得x=3 ,即DF=3,CF=8-3=5,;(3)如图,连接PB,根据折叠得:CE=CB,ECP=BCP,CP=CP,ECPBCP,PE=PB,PE+PF=PE+PB,当点F、P、B

23、三点共线时,PE+PF最小,最小值为BF的长,由(2)知:CF=5,BC=4,BCF=90, ,即PE+PF最小值为 【点睛】本题主要考查了矩形与折叠问题,等腰三角形的判定,熟练掌握矩形和折叠的性质是解题的关键4、(1)点C(6,0);(2)点;(3)满足条件的点G坐标为或【分析】(1)直接利用直线,令y=0,解方程即可;(2)结合图形,由SAMBSAOB 分析出直线OM平行于直线AB,再利用两直线相交建立方程组,解方程组求得交点M的坐标;(3)分两种情形:当n4时,如图2-1中,点Q落在BC上时,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N求出Q(n-4,

24、n-2)当n4时,如图2-2中,同法可得Q(4-n,n+2),代入直线BC的解析式解方程即可解决问题【详解】解:(1)直线交x轴正半轴于点C当y=0时,解得x=6点C(6,0)故答案为(6,0);(2)连接OM并双向延长,SAMBSAOB ,点O到AB与点M到AB的距离相等,直线OM平行于直线AB,AB解析式为y2x8,故设直线OM解析式为:,将直线OM的解析式与直线BC的解析式联立得方程组得:,解得:故点;(3)直线y2x8与x轴交于点A,与y轴交于点B,令y=0,2x8=0,解得x=-4,A(-4,0),令x=0,则y8B(0,8),点F为AB中点,点F横坐标为,纵坐标为F(-2,4),设

25、G(0,n),当n4时,如图2-1中,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N四边形FGQP是正方形,FG=QG,FGQ=90,MGF+NGQ=180-FGQ=180-90=90,FMMN,QNMN,M=N=90,MFG+MGF=90,MFG=NGQ,在FMG和GNQ中,FMGGNQ,MG=NQ=2,FM=GN=n-4,Q(n-4,n-2),点Q在直线上,,当n4时,如图2-2中,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N四边形FGQP是正方形,FG=QG,FGQ=90,MGF+NGQ=180-FGQ=180-90=

26、90,FMMN,QNMN,M=N=90,MFG+MGF=90,MFG=NGQ,在FMG和GNQ中,FMGGNQ,MG=NQ=2,FM=GN= 4-n,Q(4- n, n+2),点Q在直线上,n=-2,综上所述,满足条件的点G坐标为或【点睛】本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题5、ACB3ECB,见解析【分析】由矩形的对边平行可得F=ECB,由外角等于和它不相邻的两个内角的和可得AGC=2F,那么ECBF,所以ACB=3ECB【详解】解:ACB=3ECB 理由如下:在AGF中,AGCF+GAF2FACGAGC,ACG2FAD/BC,ECBFACBACG+BCE3F故ACB3ECB【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁