《2021-2022学年最新北师大版八年级数学下册第一章三角形的证明专项测评练习题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新北师大版八年级数学下册第一章三角形的证明专项测评练习题.docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第一章三角形的证明专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A10B15C17D192、ABC中,A,B
2、,C所对的边分别是a,b,c下列条件中不能说明ABC是直角三角形的是( )Ab2- c2=a2Ba:b:c= 5:12:13CA:B:C = 3:4:5DC =A -B3、如图,在RtABC中,ACB=90,BAC=30,ACB的平分线与ABC的外角的平分线交于E点,连接AE,则AEC的度数是( )A45B40C35D304、如图,在ABC中,BAC45,E是AC中点,连接BE,CDBE于点F,CDBE若AD,则BD的长为()A2B2C2D35、下列说法正确的是( )A三角形内部到三边距离相等的点是三边垂直平分线的交点B三条线段a、b、c,如果,则以这三条线段为边能够组成三角形C如果两个三角形
3、有两边和其中一边上高分别相等,那么这两个三角形全等D若两个三角形有两边和其中一边上的中线分别相等,那么这两个三角形全等6、下列命题是假命题的是( )A对顶角相等B直角三角形两锐角互余C同位角相等D全等三角形对应角相等7、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得米,在点C正上方找一点D(即),测得,则景观池的长AB为( )A5米B6米C8米D10米8、等腰三角形的顶角是,则这个三角形的一个底角的大小是( )ABCD9、如图,在等腰ABC中,AB=BC,ABC=108,点D为AB的中点,DEAB交AC于点E,若AB=6,则CE的长为( )A4B6C8D1010、下列说法正确的是
4、()A全等三角形是指形状相同的两个三角形B全等三角形的周长和面积分别相等C所有的直角三角形都是全等三角形D所有的等边三角形都是全等三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,RtABC中,将边沿翻折,使点落在上的点处;再将边沿翻折,使点落在的延长线上的点处,两条折痕与斜边分别交于点、,以下四个结论:;是等腰直角三角形;其中正确结论的序号有_2、如图,点P是等边ABC内的一点,PA6,PB8,PC10,若点P是ABC外的一点,且PABPAC,则APB的度数为_3、ABC的高AD所在直线与高BE所在直线相交于点F且DFCD,则ABC_4、如图,已知,点,在射
5、线ON上,点,在射线OM上,均为等边三角形,若,则的边长为_的边长为_5、如图,在ABC中,ABAC在AB、AC上分别截取AP,AQ,使APAQ再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在BAC内交于点R,作射线AR,交BC于点D若BC6,则BD的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4)(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当PAM的面积与长方形OACB的面积相等时,求
6、点P的坐标2、如图,在长方形ABCD中,AB=4,BC=6延长BC到点E,使CE=3,连接DE动点P从点B出发,沿着以每秒1个单位的速度向终点E运动,点P运动的时间为秒(1)DE的长为 ;(2)连接AP,求当为何值时,ABPDCE;(3)连接DP,求当为何值时,PDE是直角三角形;(4)直接写出当为何值时,PDE是等腰三角形3、如图,点C是线段AB上一点,ACF与BCE都是等边三角形,连接AE,BF(1)求证:AE=BF;(2)若点M,N分别是AE,BF的中点,连接CM,MN,NC依题意补全图形;判断CMN的形状,并证明你的结论4、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上(1)在线
7、段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标 5、如图,ABC中,ABAC,D为BC边的中点,AFAD,垂足为A求证:12-参考答案-一、单选题1、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论【详解】解:当腰是3,底边是7时,3+37,不满足三角形的三边关系,因此舍去当底边是3,腰长是7时,3+77,能构成三角形,则其周长3+7+717故选:C【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证
8、各种情况是否能构成三角形,这是解题的关键2、C【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可【详解】A. b2- c2=a2,根据勾股定理逆定理可以判断,ABC是直角三角形,故不符合题意;B. a:b:c= 5:12:13,设,则,则,根据勾股定理逆定理可以判断,ABC是直角三角形,故不符合题意;C. A:B:C = 3:4:5,设A、B、C分别是,则,则,所以ABC是不直角三角形,故符合题意; D. C =A -B,又A+B+C=180,则A=90,是直角三角形,故不符合题意,故选C.【点睛】本题考查了直角三角形的判定,涉及了勾股定理的逆定理、三角形内角和定理等知识,注意在应用勾股
9、定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断3、D【分析】作EFAC交CA的延长线于F,EGAB于G,EHBC交CB的延长线于H,根据角平分线的性质和判定得到AE平分FAG,求出EAB的度数,根据角平分线的定义求出ABE的度数,根据三角形内角和定理计算得到的度数,再计算出的度数即可【详解】解:作EFAC交CA的延长线于F,EGAB于G,EHBC交CB的延长线于H,CE平分ACB,BE平分ABD,EF=EH,EG=EH,EF=EG又EFAC,EGAB,AE平分FAG,BAC=30,BAF=150,EAB=75,ACB=
10、90,BAC=30,ABC=60,ABH=120,又BE平分ABD,ABE=60,AEB=180-EAB-ABE=45,ACB=90,BAC=30,ABD=120,CE是ACB的平分线,BE是ABC的外角平分线,EBD=60,BCE=45,CEB=60-45=15 故选:D【点睛】题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键,注意三角形内角和定理和角平分线的定义的正确运用4、B【分析】过点C作CNAB于点N,连接ED,EN,利用SAS证明DCEBEN,可得EDNB,CEDENB135,得ADE是等腰直角三角形,可得ADDNBN,进而可得结果【详解】解:如图,过
11、点C作CNAB于点N,连接EN,CNA90,BAC45,NCAA45,ANCN,点E是AC的中点,ANECNE45,CENAEN90,CEF+FEN90,CDBE,CFE90,CEF+FCE90,DCEBEN,在DCE和BEN中,DCEBEN(SAS),EDNB,CEDENB135,AED45AACN,ADDE,AECE,AE=EN,ADDN,ADDNBN,BD2AD2故选B【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,解题的关键在于能够正确作出辅助线,构造全等三角形求解5、D【分析】根据角平分线、三角形三边关系的性质:两边之和大于第三边,两边之差小于第三边,全等三
12、角形的判定性质,对各个选项逐个分析,即可得到答案【详解】三角形内部到三边距离相等的点是三条角平分线的交点,故选项A错误;三条线段a、b、c,如果,同时,则以这三条线段为边能够组成三角形,故选项B错误;如果两个三角形有两边和其中一边上高分别相等,两条边的夹角不一定相等,不能确定两个三角形全等,故选项C错误;若两个三角形有两边和其中一边上的中线分别相等,那么这两个三角形全等,故选项D正确;故选:D【点睛】本题考查了垂直平分线、角平分线、三角形、全等三角形的知识;解题的关键是熟练掌握三角形角平分线、三角形三边关系、全等三角形的性质,从而完成求解6、C【分析】根据对顶角的性质、直角三角形的性质、平行线
13、的性质、全等三角形的性质逐项判断即可得【详解】解:A、对顶角相等,则此项命题是真命题;B、直角三角形两锐角互余,则此项命题是真命题;C、两直线平行,同位角相等,则此项命题是假命题;D、全等三角形对应角相等,则此项命题是真命题;故选:C【点睛】本题考查了对顶角、直角三角形的性质、平行线的性质、全等三角形的性质、命题,熟练掌握各性质是解题关键7、D【分析】利用勾股定理求出CD的长,进而求出BC的长, 即可求解【详解】解:, , , , , , , ,故选:D【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理8、A【分析】根据等腰三角形的两底角相等,即可求解【详解】解:等腰三角形的顶角是,这个三
14、角形的一个底角的大小是 故选:A【点睛】本题主要考查了等腰三角形的性质,熟练掌握等腰三角形的两底角相等是解题的关键9、B【分析】由等腰三角形的等边对等角性质即可得出CAB=BCA=36,再由垂直平分线定理可知CAB=ABE=36,再由三角形内角和为180即可推出CEB=EBC,故CE=BC=AB=6【详解】AB=BC,ABC=108CAB=BCA=36又点D为AB的中点,DEAB交AC于点EAE=BEBC=CECE=AB=6故选:B【点睛】本题考查了等腰三角形的性质、垂直平分线的性质、三角形内角和的性质,熟悉使用有关性质是解题的关键10、B【分析】根据全等三角形的性质,等边三角形的性质判断即可
15、【详解】解:A、全等三角形是指形状和大小相同的两个三角形,该选项错误;B、全等三角形的周长和面积分别相等,该选项正确;C、所有的直角三角形不一定都是全等三角形,该选项错误;D、所有的等边三角形不一定都是全等三角形,该选项错误;故选:B【点睛】本题考查的是全等三角形的性质,掌握全等形的概念,全等三角形的性质是解题的关键二、填空题1、【分析】根据折叠的性质,然后结合等腰三角形的性质,直角三角形的性质,以及勾股定理,分别对每个选项进行判断,即可得到答案【详解】解:由折叠的性质可知,;故正确;,是等腰直角三角形;故正确;由勾股定理,则,由勾股定理,则,故错误;,;故正确;正确的选项有;故答案为:;【点
16、睛】本题考查了折叠的性质,勾股定理,等腰三角形的判定和性质,三角形的面积公式等知识,解题的关键是掌握折叠的性质,正确得到边相等、角相等2、150【分析】如图:连接PP,由PACPAB可得PAPA、PABPAC,进而可得APP为等边三角形易得PPAPAP6;然后再利用勾股定理逆定理可得BPP为直角三角形,且BPP90,最后根据角的和差即可解答【详解】解:连接PP,PACPAB,PAPA,PABPAC,PAPBAC60,APP为等边三角形,PPAPAP6;PP2+BP2BP2,BPP为直角三角形,且BPP90,APB90+60150故答案为:150【点睛】本题主要考查了全等三角形的性质、等边三角形
17、的判定与性质、勾股定理逆定理的应用等知识点,灵活应用相关知识点成为解答本题的关键3、45或135【分析】根据题意,分两种情况讨论:当为锐角三角形时;当为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得【详解】解:如图所示:当为锐角三角形时,在BDF与中,BDFADC,;如图所示:当为钝角三角形时,在BDF与中,BDFADC,综合可得:为或,故答案为:或【点睛】题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键4、2a 2n1a 【分析】利用等边三角形的性质得到A1OB1A1B1O30,OA1
18、A1B1A2B1a,利用同样的方法得到A2OA2B22a21a,A3B3A3O2A2O422a,利用此规律即可得到AnBn2n1a【详解】解:A1B1A2为等边三角形,MON30,A1OB1A1B1O30,OA1A1B1A2B1a,同理:A2OA2B2221a,A3B3A3O2A2O4a22a,以此类推可得AnBnAn+1的边长为AnBn2n1a故答案为:2a;2n1a【点睛】本题考查规律型:图形的变化类,等边三角形的性质,解题关键是掌握三角形边长的变化规律5、3【分析】根据题意依据等腰三角形的性质,即可得到BD=BC,进而分析计算即可得出结论【详解】解:由题可得,AR平分BAC,又AB=AC
19、,AD是三角形ABC的中线,BD=BC=6=3.故答案为:3【点睛】本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合三、解答题1、(1);(2)5;(3)点P的坐标为(,)或(,)【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AMBM,OMOBBM,再次利用勾股定理得出AM的长;(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积
20、公式即可求出P点坐标;(方法二)由PAM的面积与长方形OACB的面积相等可得出SPAM的值,设点P的坐标为(x,x4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解【详解】解:(1)四边形AOBC为长方形,且点C的坐标是(8,4),AOCB4,OBAC8,A点坐标为(0,4),B点坐标为(8,0)设对角线AB所在直线的函数关系式为ykxb,则有,解得:,对角线AB所在直线的函数关系式为yx4(2)AOB90,勾股定理得:AB4,MN垂直平分AB,BNANAB2MN为线段AB的垂直平分线,AMBM设AMa,则BMa,OM8a,由勾股定理得,a242
21、(8a)2,解得a5,即AM5(3)(方法一)OM3,点M坐标为(3,0)又点A坐标为(0,4),直线AM的解析式为yx4点P在直线AB:yx4上,设P点坐标为(m,m4),点P到直线AM:xy40的距离hPAM的面积SPAMAMh|m|SOABCAOOB32,解得m ,故点P的坐标为(,)或(,)(方法二)S长方形OACB8432,SPAM32设点P的坐标为(x,x4)当点P在AM右侧时,SPAMMB(yAyP)5(4x4)32,解得:x,点P的坐标为(,);当点P在AM左侧时,SPAMSPMBSABMMByP105(x4)1032,解得:x,点P的坐标为(,)综上所述,点P的坐标为(,)或
22、(,)【点睛】本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个2、(1)5;(2)秒时,ABPDCE;(3)当秒或秒时,PDE是直角三角形;(4)当秒或秒或秒时,PDE为等腰三角形【分析】(1)根据长方形的性质及勾股定理直接求解即可;(2)根据全等三角形
23、的性质可得:,即可求出时间t;(3)分两种情况讨论:当时,在两个直角三角形中运用两次勾股定理,然后建立等量关系求解即可;当时,此时点P与点C重合,得出,即可计算t的值;(4)分三种情况讨论:当时,当时,当时,分别结合图形,利用各边之间的关系及勾股定理求解即可得【详解】解:(1)四边形ABCD为长方形,在RtDCE中,故答案为:5;(2)如图所示:当点P到如图所示位置时,ABPDCE,ABPDCE,仅有如图所示一种情况,此时,秒时,ABPDCE;(3)当时,如图所示:在RtPDE中,在RtPCD中,解得:;当时,此时点P与点C重合,;综上可得:当秒或秒时,PDE是直角三角形;(4)若PDE为等腰
24、三角形,分三种情况讨论:当时,如图所示:,;当时,如图所示:,;当时,如图所示:,在RtPDC中,即,解得:,;综上可得:当秒或秒或秒时,PDE为等腰三角形【点睛】题目主要考查勾股定理解三角形,等腰三角形的性质,全等三角形的性质等,理解题意,分类讨论作出相应图形是解题关键3、(1)证明见解析;(2)补全图形见解析;是等边三角形,证明见解析【分析】(1)由等边三角形的性质可知,结合题意易得出即可利用“SAS”证明,即得出;(2)根据题意补全图形即可;由全等三角形的性质可知,再由题意点M,N分别是AE,BF的中点,即得出即可利用“SAS”证明,得出结论,最后根据,即得出,即可判定是等边三角形(1)
25、与都是等边三角形,即,在和中,(2)画图如下:是等边三角形理由如下:,点M,N分别是AE,BF的中点,在和中,即,是等边三角形【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点利用数形结合的思想是解答本题的关键4、(1)见解析;(2)(0,)【分析】(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标【详解】解:(1)如图,
26、点P即为所求;(2)A的坐标(0,6),点B的坐标(3,0),OA=6,OB=3,PA=PB=OA-OP=6-OP,PB2-OP2=OB2,(6-OP)2-OP2=32,解得OP=,点P的坐标为(0,)【点睛】本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质5、见详解【分析】根据等腰三角形三合一性质以及等边对等角性质得出ADBC,B=C,根据AFAD,利用在同一平面内垂直同一直线的两直线平行得出AFBC,利用平行线性质得出1=B,2=C即可【详解】证明:ABC中,ABAC,D为BC边的中点,ADBC,B=C,AFAD,AFBC,1=B,2=C,12【点睛】本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键