2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向测试试卷(精选含详解).docx

上传人:知****量 文档编号:28170293 上传时间:2022-07-26 格式:DOCX 页数:31 大小:690.22KB
返回 下载 相关 举报
2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向测试试卷(精选含详解).docx_第1页
第1页 / 共31页
2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向测试试卷(精选含详解).docx_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向测试试卷(精选含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向测试试卷(精选含详解).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个三角形的三个外角之比为3:4:5,则该三角形为()A直角三角形B等腰三角形C等边三角形D等腰直角三角形2

2、、下列四个命题是真命题的有()同位角相等;相等的角是对顶角;直角三角形两个锐角互余;三个内角相等的三角形是等边三角形A1个B2个C3个D4个3、如图,ABAC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定ABEACD的是( )ABCBADAECBECDDAEBADC4、若三条线段中a3,b5,c为奇数,那么以a、b、c为边组成的三角形共有( )A1个B2个C3个D4个5、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A10B15C17D196、如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:;为等边三角形;.其中正确的结论个数是(

3、 )A1个B2个C3个D4个7、如图,已知为的外角,那么的度数是( )A30B40C50D608、如图,ABC的面积为18,AD平分BAC,且ADBD于点D,则ADC的面积是()A8B10C9D169、满足下列条件的两个三角形不一定全等的是( )A周长相等的两个三角形B有一腰和底边对应相等的两个等腰三角形C三边都对应相等的两个三角形D两条直角边对应相等的两个直角三角形10、等腰三角形的一个顶角是80,则它的底角是( )A40B50C60D70第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、等腰,底角为70,点在边上,将分成两个三角形,当这两个三角形有一个是以为腰的等腰三

4、角形时,则的度数是_2、如图,点F,A,D,C在同一条直线上,则AC等于_3、如图,在中,已知点分别为的中点,若的面积为,则阴影部分的面积为 _ 4、一个等腰三角形的一边长为2,另一边长为9,则它的周长是_5、等腰三角形的两边长分别是和,则它的周长为_三、解答题(10小题,每小题5分,共计50分)1、如图,ABC中,ABAC,D为BC边的中点,AFAD,垂足为A求证:122、如图,在ABC中,ABAC,M,N分别是AB,AC边上的点,并且MNBC(1)AMN是否是等腰三角形?说明理由;(2)点P是MN上的一点,并且BP平分ABC,CP平分ACB求证:BPM是等腰三角形;若ABC的周长为a,BC

5、b(a2b),求AMN的周长(用含a,b的式子表示)3、如图,在中,、分别是上的高和中线,求的长4、如图,在ABC中,ADBE,DAC10,AE是BAC的外角MAC的平分线,BF平分ABC交AE于点F,求AFB的度数5、已知:如图,在ABC中,ABAC,点D、E分别在边BC,AC上,ADAE(1)若BAD30,则EDC ;若EDC20,则BAD (2)设BADx,EDCy,写出y与x之间的关系式,并给出证明6、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一如图1所示的“三等分角仪”是利用阿基米德原理做出的这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒

6、PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OAOCPCAOB为要三等分的任意角则利用“三等分角仪”可以得到APB AOB我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明已知:如图2,点O,C分别在APB的边PB,PA上,且OAOCPC求证:APB AOB7、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,P为上一点,当_时,与是偏等积三角形;(2)如图2,四边形是一片绿色花园,、是等腰直角三角形,与是偏等积三角形吗?请说明理由;已知的面积为如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G若小路每米造价600元,

7、请计算修建小路的总造价8、如图,点A,B,C,D在一条直线上,(1)求证:(2)若,求F的度数9、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,(1)求证:;(2)若,求BE的长10、如图,AD为ABC的角平分线(1)如图1,若BEAD于点E,交AC于点F,AB4,AC7则CF ;(2)如图2,CGAD于点G,连接BG,若ABG的面积是6,求ABC的面积;(3)如图3,若B2C,ABm,ACn,则CD的长为 (用含m,n的式子表示)-参考答案-一、单选题1、A【分析】根据三角形外角和为360计算,求出内角的度数,判断即可【详解】解:设三角形的三个外角的度数分别为3x、

8、4x、5x,则3x+4x+5x360,解得,x30,三角形的三个外角的度数分别为90、120、150,对应的三个内角的度数分别为90、60、30,此三角形为直角三角形,故选:A【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360是解题的关键2、B【分析】利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项【详解】两直线平行,同位角相等,故错误,是假命题;相等的角是对顶角,错误,是假命题;直角三角形两个锐角互余,正确,是真命题;三个内角相等的三角形是等边三角形,正确,是真命题,综上所述真命题有2个,故选:B【点睛】本题考查了命题真假的判断,要说明

9、一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题3、C【分析】根据全等三角形的判定定理进行判断即可【详解】解:根据题意可知:ABAC,若,则根据可以证明ABEACD,故A不符合题意;若ADAE,则根据可以证明ABEACD,故B不符合题意;若BECD,则根据不可以证明ABEACD,故C符合题意;若AEBADC,则根据可以证明ABEACD,故D不符合题意;故选:C【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键4、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数【详解】解:c

10、的范围是:53c5+3,即2c8c是奇数,c3或5或7,有3个值则对应的三角形有3个故选:C【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键5、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论【详解】解:当腰是3,底边是7时,3+37,不满足三角形的三边关系,因此舍去当底边是3,腰长是7时,3+77,能构成三角形,则其周长3+7+717故选:C【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键6、D【分析】由SAS即可证明,则正

11、确;有CAE=CDB,然后证明ACMDCN,则正确;由CM=CN,MCN=60,即可得到为等边三角形,则正确;由ADCE,则DAO=NEO=CBN,由外角的性质,即可得到答案【详解】解:DAC和EBC均是等边三角形,AC=CD,BC=CE,ACD=BCE=60,ACD+DCE=BCE+DCE,即ACE=BCD,MCN=180-ACD-BCE=60,在ACE和DCB中,ACEDCB(SAS),则正确;AE=BD,CAE=CDB,在ACM和DCN中,ACMDCN(ASA),CM=CN,;则正确;MCN=60,为等边三角形;则正确;DAC=ECB=60,ADCE,DAO=NEO=CBN,;则正确;正

12、确的结论由4个;故选D【点睛】本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键7、B【分析】根据三角形的外角性质解答即可【详解】解:ACD60,B20,AACDB602040,故选:B【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答8、C【分析】延长BD交AC于点E,根据角平分线及垂直的性质可得:,依据全等三角形的判定定理及性质可得:,再根据三角形的面积公式可得:SABD=SADE,SBDC=SCDE,得出SADC=12SABC,求解即可【详解】解:如图,延长BD交AC于点E,AD平分,在

13、和中,SABD=SADE,SBDC=SCDE,SADC=12SABC=1218=9,故选:C【点睛】题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键9、A【分析】根据全等三角形的判定方法求解即可判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可【详解】解:A、周长相等的两个三角形不一定全等,符合题意; B、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符

14、合题意故选:A【点睛】此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形)10、B【分析】依据三角形的内角和是180以及等腰三角形的性质即可解答【详解】解:(180-80)2=1002=50;答:底角为50故选:B【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点二、填空题1、100或110【分析】画出图形,分两种情况考虑:AD=BD时,则ABD=A,由三角形内角和可求得ADB的度数;BD=BC时,则BDC=C=70,从而可求得ADB的度数【详解】AB=AC,底角为70ABC=C=

15、70,A=180(ABC+C)=40 当AD=BD时,如图1,则ABD=A=40ADB=180(A+ABD)=18080=100当BD=BC时,如图2,则BDC=C=70ADB=180BDC=18070=110综上所述,ADB的度数为100或110【点睛】本题考查了等腰三角形的性质、三角形内角和定理等知识,涉及分类讨论,关键是等腰三角形的性质,另外要注意分类讨论2、6.5【分析】由全等三角形的性质可得到AC=DF,从而推出AF=CD,再由,求出,则【详解】解:ABCDEF,AC=DF,即AF+AD=CD+AD,AF=CD,故答案为:6.5【点睛】本题主要考查了全等三角形的性质,线段的和差,解题

16、的关键在于能够熟练掌握全等三角形的性质3、1【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答【详解】解:点E是AD的中点,SABESABD,SACESADC,SABESACESABC42cm2,SBCESABC42cm2,点F是CE的中点,SBEFSBCE21cm2故答案为:1【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等4、20【分析】题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】解:分两种情况:当腰为2时,229,所以不

17、能构成三角形;当腰为9时,299,所以能构成三角形,周长是:29920故答案为:20【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键5、22【分析】分两种情况讨论:当腰长为时, 当腰长为时,再结合三角形的三边关系,从而可得答案.【详解】解: 等腰三角形的两边长分别是和, 当腰长为时,此时 不符合题意,舍去,当腰长为时,此时 符合题意,所以三角形的周长为: 故答案为:【点睛】本题考查的是等腰三角形的定义,三角形的三边关系,掌握“等腰三角形的两腰相等,再分情况讨论

18、”是解本题的关键.三、解答题1、见详解【分析】根据等腰三角形三合一性质以及等边对等角性质得出ADBC,B=C,根据AFAD,利用在同一平面内垂直同一直线的两直线平行得出AFBC,利用平行线性质得出1=B,2=C即可【详解】证明:ABC中,ABAC,D为BC边的中点,ADBC,B=C,AFAD,AFBC,1=B,2=C,12【点睛】本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键2、(1)AMN是是等腰三角形;理由见解析;(2)证明见解析;ab【分析】(1)由等腰三角形的性质得到ABC=ACB,由平行线的性质得到AMN=ABC,ANM=ACB,于是得到

19、AMN=ANM,根据等角对等边即可证得结论;(2)由角平分线的定义得到PBM=PBC,由平行线的性质得到MPB=PBC,于是得到PBM=MPB,根据等角对等边即可证得结论;由知MB=MP,同理可得:NC=NP,故AMN的周长=AB+AC,再根据已知条件即可求出结果(1)解:AMN是是等腰三角形,理由如下:ABAC,ABCACB,MNBC,AMNABC,ANMACB,AMNANM,AMAN,AMN是等腰三角形;(2)证明:BP平分ABC,PBMPBC,MNBC,MPBPBCPBMMPB,MBMP,BPM是等腰三角形;由知MBMP,同理可得:NCNP,AMN的周长AM+MP+NP+ANAM+MB+

20、NC+ANAB+AC,ABC的周长为a,BCb,AB+AC+ba,AB+ACabAMN的周长ab【点睛】本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键3、6cm【分析】先根据中线的定义结合已知条件求得AB,然后再运用三角形的面积公式求解即可.【详解】解:是边上的中线,是的中点,=.【点睛】本题主要考查了三角形的中线的定义以及三角形的面积公式,掌握三角形中线的定义成为解答本题的关键.4、AFB40【分析】由题意易得ADC90,ACB80,然后可得,进而根据三角形外角的性质可求解【详解】解:ADBE,ADC90,DAC10,ACB90DAC90108

21、0,AE是MAC的平分线,BF平分ABC,又MAEABF+AFB,MACABC+ACB,AFBMAEABF【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键5、(1)15,40;(2)yx,见解析【分析】(1)设EDCm,则BCn,根据ADEAEDm+n,ADCB+BAD即可列出方程,从而求解(2)设BADx,EDCy,根据等腰三角形的性质可得BC,ADEAEDC+EDCB+y,由ADCB+BADADE+EDC即可得B+xB+y+y,从而求解【详解】解:(1)设EDCm,BCn,AEDEDC+Cm+n,又ADAE,ADEAEDm+n,则A

22、DCADE+EDC2m+n,又ADCB+BAD,BAD2m,2m+nn+30,解得m15,EDC的度数是15;若EDC20,则BAD2m22040故答案是:15;40;(2)y与x之间的关系式为yx,证明:设BADx,EDCy,ABAC,ADAE,BC,ADEAED,AEDC+EDCB+y,ADCB+BADADE+EDC,B+xB+y+y,2yx,yx【点睛】本题主要考查了等腰三角形的性质、三角形外角的性质以及一元一次方程的应用,灵活运用等腰三角形的性质成为解答本题的关键6、见解析【分析】由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明【详解】解:,为等

23、腰三角形,由外角的性质得:,再由外角的性质得:,【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解7、(1);(2)与是偏等积三角形,理由见详解;修建小路的总造价为元【分析】(1)当时,则,证,再证与不全等,即可得出结论;(2)过作于,过作于,证,得,则,再证与不全等,即可得出结论;过点作,交的延长线于,证得,得到,再证,得,由余角的性质可证,然后由三角形面积和偏等积三角形的定义得,求出,即可求解【详解】解:(1)当时,与是偏等积三角形,理由如下:设点到的距离为,则,、,与不全等,与是偏等积三角形,故答案为:;(3)与是偏等积三角形,理由如下:过作于,

24、过作于,如图3所示:则,、是等腰直角三角形,在和中,与不全等,与是偏等积三角形;如图4,过点作,交的延长线于,则,点为的中点,在和中,在和中,由得:与是偏等积三角形,修建小路的总造价为:(元【点睛】本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明和是解题的关键,属于中考常考题型8、(1)见解析;(2)【分析】(1)根据平行线的性质可得,根据线段的和差关系可得,进而根据即证明;(2)根据三角形内角和定理以及补角的意义求得E,进而根据(1)的结论即可求得F【详解】(1)证明:

25、,即又,(2)解:,【点睛】本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键9、(1)见解析(2)【分析】(1)利用是的外角,以及证明即可(2)证明,可知,从而得出答案(1)证明:是的外角,又,(2)解:在和中,【点睛】本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键10、(1)3(2)12(3)【分析】(1)利用ASA证明AEFABE,得AE=AB=4,得出答案;(2)延长CG、AB交于点H,设SBGC=SHGB=a,用两种方法表示ACH的面积即可;(3)在AC上取AN=AB,可得CD=DN=n-

26、m,根据ABD和ACD的高相等,面积比等于底之比可求出CD的长(1)AD是ABC的平分线,BAD=CAD,BEAD,BEA=FEA,在AEF和AEB中, ,AEFAEB(ASA),AF=AB=4,AC=7 CF=AC-AF=7-4=3,故答案为:3;(2)延长CG、AB交于点H,如图,由(1)知AC=AH,点G为CH的中点,设SBGC=SHGB=a,根据ACH的面积可得:SABC+2a=2(6+a),SABC=12;(3)在AC上取AN=AB,如图,AD是ABC的平分线,NAD=BAD,在ADN与ADB中,ADNADB(SAS),AND=B,DN=BD,B=2C,AND=2C,C=CDN,CN=DN=AC-AB=n-m,BD=DN=n-m,根据ABD和ACD的高相等,面积比等于底之比可得:,故答案为:【点睛】本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁