《2021-2022学年度强化训练北师大版九年级数学下册第三章-圆同步测试练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版九年级数学下册第三章-圆同步测试练习题(含详解).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第三章 圆同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知O的半径为3cm,在平面内有一点A,且OA=6cm,则点A与O的位置关系是( )A点A在O内 ;B点A在O上;C
2、点A在O外;D不能确定2、如图,AB是O的直径,CD为弦,CDAB于点E,则下列结论中不成立是( )A弧AC弧ADB弧BC弧BDCCEDEDOEBE3、如图,四边形ABCD内接于O,连接BD,若,BDC50,则ADC的度数是()A125B130C135D1404、计算半径为1,圆心角为的扇形面积为( )ABCD5、下列图形中,ABC与DEF不一定相似的是( )ABCD6、已知O的半径等于5,圆心O到直线l的距离为6,那么直线l与O的公共点的个数是( )A0B1C2D无法确定7、如图,小王将一长为4,宽为3的长方形木板放在桌面上按顺时针方向做无滑动的翻滚,当第二次翻滚时被桌面上一小木块挡住,此时
3、木板与桌面成30角,则点A运动到A2时的路径长为()A10B4CD8、如图,等边ABC内接于O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切O于点C,AFCF交O于点G下列结论:ADC60;DB2DEDA;若AD2,则四边形ABDC的面积为;若CF2,则图中阴影部分的面积为正确的个数为()A1个B2个C3个D4个9、如图,在圆中半径OC弦AB,且弦ABCO2,则图中阴影部分面积为( )ABCD10、如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A3B4CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共
4、计20分)1、如图,点D是O上一点,C是弧AB的中点,若ACB116,则BDC的度数是 _2、如图,圆锥的底面半径OC1,高AO2,则该圆锥的侧面积等于 _3、如图,1是正五边形两条对角线的夹角,则1=_度4、如图,四边形ABCD内接于O,点M在AD的延长线上,AOC142,则CDM_5、已知正多边形的半径与边长相等,那么正多边形的边数是_三、解答题(5小题,每小题10分,共计50分)1、已知AB是O的直径,点C是圆O上一点,点P为O外一点,且OPBC,PBAC(1)求证:PA为O的切线;(2)如果OPAB6,求图中阴影部分面积2、如图,AB为O的直径,弦于,连接,过作,交O于点,连接DF,过
5、作,交DF的延长线于点(1)求证:BG是O的切线;(2)若,DF=4,求FG的长3、如图,内接于,弦AE与弦BC交于点D,连接BO,(1)求证:;(2)若,求的度数;(3)在(2)的条件下,过点O作于点H,延长HO交AB于点P,若,求半径的长4、如图,已知抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l与抛物线交于A,D两点,点D的坐标为,与y轴交于点E(1)求A,B两点的坐标及直线l的解析式;(2)若点P在直线l下方抛物线上,过点P作轴于点M,直线与直线l交于点N,当点M是的三等分点时,求点P的坐标;(3)若点H是抛物线对称轴上的一点,且,请直接写出点H的坐标5、ABC
6、中,BCAC5,AB8,CD为AB边上的高,如图1,A在原点处,点B在y轴正半轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动ABC在平面上滑动如图2,设运动时间表为t秒,当B到达原点时停止运动(1)当t0时,求点C的坐标;(2)当t4时,求OD的长及BAO的大小;(3)求从t0到t4这一时段点D运动路线的长;(4)当以点C为圆心,CA为半径的圆与坐标轴相切时,求t的值-参考答案-一、单选题1、C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用dr时,点在圆外;当d=r时,点在圆上;当dr时,点在圆内判断出即可
7、【详解】解:O的半径为3cm,OA=6cm,dr,点A与O的位置关系是:点A在O外,故选:C【点睛】本题主要考查了对点与圆的位置关系的判断关键要记住若半径为r,点到圆心的距离为d,则有:当dr时,点在圆外;当d=r时,点在圆上,当dr时,点在圆内2、D【分析】根据垂径定理解答【详解】解:AB是O的直径,CD为弦,CDAB于点E,弧AC弧AD,弧BC弧BD,CEDE,故选:D【点睛】此题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,熟记定理是解题的关键3、B【分析】如图所示,连接AC,由圆周角定理BAC=BDC=50,再由等弧所对的圆周角相等得到ABC=BAC=50,再根据圆内接
8、四边形对角互补求解即可【详解】解:如图所示,连接AC,BAC=BDC=50,ABC=BAC=50,四边形ABCD是圆内接四边形,ADC=180-ABC=130,故选B【点睛】本题主要考查了圆周角定理,等弧所对的圆周角相等,圆内接四边形对角互补,熟练掌握相关知识是解题的关键4、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键5、A【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90,ACB=EDF可以判定ABCDEF,故本选项不
9、符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得到:ACB=90,所以根据ACB=CDB=90,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理6、A【分析】圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案【详解】解:O的半径等于为8,圆心O到直线l的距离为为6,直线l与相离,直线l与O的公共
10、点的个数为0,故选A【点睛】本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键7、C【分析】根据题意可得:第一次转动的路径是以点B为圆心,AB长为半径的弧长,此时圆心角 ,第二次转动的路径是以点C为圆心,A1C长为半径的弧长,此时圆心角 ,再由弧长公式,即可求解【详解】解:如图,根据题意得: , ,第一次转动的路径是以点B为圆心,AB长为半径的弧长,此时圆心角 , ,第二次转动的路径是以点C为圆心,A1C长为半径的弧长,此时圆心角 , ,点A运动到A2时的路径长为 故选:C【点睛】本题主要考查了求弧长,熟练掌握扇形的弧长公式是
11、解题的关键8、C【分析】如图1,ABC是等边三角形,则ABC60,根据同弧所对的圆周角相等ADCABC60,所以判断正确;如图1,可证明DBEDAC,则,所以DBDCDEDA,而DB与DC不一定相等,所以判断错误;如图2,作AHBD于点H,延长DB到点K,使BKCD,连接AK,先证明ABKACD,可证明S四边形ABDCSADK,可以求得SADK,所以判断正确;如图3,连接OA、OG、OC、GC,由CF切O于点C得CFOC,而AFCF,所以AFOC,由圆周角定理可得AOC120,则OACOCA30,于是CAGOCA30,则COG2CAG60,可证明AOG和COG都是等边三角形,则四边形OABC是
12、菱形,因此OACG,推导出S阴影S扇形COG,在RtCFG中根据勾股定理求出CG的长为4,则O的半径为4,可求得S阴影S扇形COG,所以判断正确,所以这3个结论正确【详解】解:如图1,ABC是等边三角形,ABC60,等边ABC内接于O,ADCABC60,故正确;BDEACB60,ADCABC60,BDEADC,又DBEDAC,DBEDAC,,DBDCDEDA,D是上任一点,DB与DC不一定相等,DBDC与DB2也不一定相等,DB2与DEDA也不一定相等,故错误;如图2,作AHBD于点H,延长DB到点K,使BKCD,连接AK,ABK+ABD180,ACD+ABD180,ABKACD,ABAC,A
13、BKACD(SAS),AKAD,SABKSACD,DHKHDK,AHD90,ADH60,DAH30,AD2,DHAD1, DK2DH2,SADK,S四边形ABDCSABD+SACDSABD+SABKSADK,故正确;如图3,连接OA、OG、OC、GC,则OAOGOC,CF切O于点C,CFOC,AFCF,AFOC,AOC2ABC120,OACOCA(180120)30,CAGOCA30,COG2CAG60,AOG60,AOG和COG都是等边三角形,OAOCAGCGOG,四边形OABC是菱形,OACG,SCAGSCOG,S阴影S扇形COG,OCF90,OCG60,FCG30,F90,FGCG,FG
14、2+CF2CG2,CF,(CG)2+()2CG2,CG4,OCCG4,S阴影S扇形COG,故正确,这3个结论正确,故选C【点睛】本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解9、C【分析】连接OA,OB,根据平行线的性质确定,再根据AB=CO和圆的性质确定是等边三角形,进而得出,最后根据扇形面积公式即可求解【详解】解:如下图所示,连接OA,OB,S阴=S扇形AOBAO,BO,CO都是的半径,AO=BO=COAB=CO=2,AO=BO=AB=2是等边三
15、角形S阴=S扇形AOB=故选:C【点睛】本题考查平行线的性质,等边三角形的判定定理,扇形面积公式,综合应用这些知识点是解题关键10、D【分析】作OMAB于M,ONCD于N,根据垂径定理、勾股定理得:OM=ON=4,再根据四边形MONP是正方形,故可求解【详解】作OMAB于M,ONCD于N,连接OB,OD,OB=5,BM= ,OM=AB=CD=8,ON=OM=4,弦AB、CD互相垂直,DPB=90,OMAB于M,ONCD于N,OMP=ONP=90四边形MONP是矩形,OM=ON,四边形MONP是正方形,OP=3故选C【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线二、填空
16、题1、32【分析】根据圆内接四边形的性质得出ADB+ACB180,求出ADB64,根据C是弧AB的中点求出,根据圆周角定理得出BDCADCADB,再求出答案即可【详解】解:A、C、B、D四点共圆,ADB+ACB180,ACB116,ADB18011664,C是弧AB的中点,BDCADCADB32,故答案为:32【点睛】本题考查四点共圆性质,圆周角与弧的关系,掌握四点共圆性质,圆周角与弧的关系是解题关键2、【分析】根据底面半径和高利用勾股定理得,然后根据圆锥的侧面积计算公式可直接进行求解【详解】解:,圆锥的侧面积为故答案为【点睛】本题主要考查圆锥的侧面积,熟练掌握圆锥的侧面积计算公式是解题的关键
17、3、72【分析】根据多边形的内角和定理及正多边形的性质即可求得结果【详解】正五边形的每个内角为多边形为正五边形,即AB=BC=CD,如图 ABC、BCD均为等腰三角形,且ABC=BCD=108 1=BCA+CBD=72 故答案为:72【点睛】本题考查了正多边形的性质及多边形的内角和定理,三角形外角性质,等腰三角形性质等知识,掌握正多边形的性质及多边形内角和定理是本题的关键4、71【分析】根据圆周角定理得到B71,再根据圆内接四边形的任意一个外角等于它的内对角即可得解【详解】解:AOC142,BAOC71,四边形ABCD内接于O,CDMB71,故答案为:71【点睛】此题考查了圆内接四边形的性质、
18、圆周角定理,熟记圆内接四边形的性质、圆周角定理是解题的关键5、六【分析】设这个正多边形的边数为n,根据题意可知OA=OB=AB,则OAB是等边三角形,得到AOB=60,则,由此即可得到答案【详解】解:设这个正多边形的边数为n,正多边形的半径与边长相等,OA=OB=AB,OAB是等边三角形,AOB=60,正多边形的边数是六,故答案为:六【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键三、解答题1、(1)见解析;(2)3【分析】(1)先由圆周角定理得ACB90,则BAC+B90再由平行线的性质得AOPB,然后证P+AOP90,则PAO90,即可得证;(2)先证O
19、APBCA(AAS),得BCOAAB3,再由扇形面积减去三角形面积即可解决问题【详解】(1)证明:AB是O的直径,ACB90,BAC+B90,又OPBC,AOPB,BAC+AOP90,PBAC,P+AOP90,PAO90,PAOA,OA是的O的半径,PA为O的切线;(2)解:如图,连接OC,由(1)得:PAOACB90,在OAP和BCA中,OAPBCA(AAS),OPAB6,BCOAOCAB3,OBC是等边三角形,COB60,AOC120,S扇形AOC3,OAOC,OAC30,OHOA,AH,AC2AH3,SAOCACOH3,图中阴影部分面积S扇形AOCSAOC3【点睛】本题考查了切线的证明和
20、扇形面积的计算,解题关键是熟练掌握切线证明方法和扇形面积公式2、(1)见解析;(2)【分析】(1)由题意根据切线的判定证明半径OBBG即可BG是O的切线;(2)根据题意连接CF,根据圆周角定理和中位线性质得出,进而依据等边三角形和四边形BEDG是矩形进行分析即可得出FG的长【详解】解:(1)证明: C,A,D,F在O上,CAF=90, D=CAF=90 ABCE,BGDF, BED=G=90 四边形BEDG中,ABG=90 半径OBBG BG是O的切线(2)连接CF, CAF=90, CF是O的直径 OC=OF 直径ABCD于E, CE=DE OE是CDF的中位线 ,AFD=30, ACD=A
21、FD=30 OA=OC, AOC是等边三角形 CEAB, E为AO中点, OA=2OE=4,OB=4 BED=D=G=90, 四边形BEDG是矩形 DG=BE=6 【点睛】本题考查圆的综合问题,熟练掌握切线的判定和圆周角定理和中位线性质以及等边三角形和矩形性质是解题的关键.3、(1)见解析;(2)30;(3)【分析】(1)如图所示,连接OA,则,由OA=OB,得到OAB=OBA,即可推出,即OBA+ACB=90,再由OBA=CAE,则ACB+CAE=90,由此即可证明;(2)如图所示,连接CE,则ABC=AEC,由,可得AEC=30,则ABC=30;(3)如图所示,过点O作OFAB于F,则BF
22、=AF,设FP=x,可得BP=BF+PF=6+2x,OP=2FP=2x,推出PH=OP+OH=1+2x,则BP=2+4x,从而得到2+4x=6+2x,由此求解即可【详解】解:(1)如图所示,连接OA,OA=OB,OAB=OBA,OAB+OBA+AOB=180,即OBA+ACB=90,又OBA=CAE,ACB+CAE=90,ADC=90,AEBC;(2)如图所示,连接CE,ABC=AEC,AEBC,AEC=30,ABC=30;(3)如图所示,过点O作OFAB于F,BF=AF,设FP=x,BF=AF=AP+PF=6+x,BP=BF+PF=6+2xABC=30,PHBC, BPH=60,BP=2PH
23、,又OFAB,OFP=90,POF=30,OP=2FP=2x,PH=OP+OH=1+2x,BP=2+4x,2+4x=6+2x,解得x=2,PF=2,BF=8,PO=4,圆O的半径长为【点睛】本题主要考查了圆周角定理,含30度角的直角三角形的性质,等腰三角形的性质,特殊角三角形函数值求度数,勾股定理,垂径定理等等,解题的关键在于能够正确作出辅助线求解4、(1)A(1,0),B(3,0),;(2)点P的坐标为(2.5,1.75)或(1,4);(3)点H的坐标为(1,5)或(1,4).【分析】(1)先令y0时,x13,x21. ,即可得到A、B的坐标,然后设直线l解析式为,代入A、D坐标求解即可;(
24、2)根据题意设点P坐标为(m,),则点N(m,),然后分PM,且P只能在x轴的下方,这两种情况讨论求解即可;(3)过点D作DGx轴于G,可得AG=BG=5,AGD=90,再由AHD=45,则点在以G为圆心,以5为半径的圆上,且H在AD下方,设的坐标为(1,n),则,即可求出的坐标为(1,-4);同理当H在AD上方时,H在以(-1,5)为圆心,5为半径的圆上,由此即可得到答案【详解】(1)当y0时,解得x13,x21. A(1,0),B(3,0).设直线l解析式为, l经过D(4,5),A(1,0), , 直线l解析式为;(2)根据题意设点P坐标为(m,),则点N(m,), 点M是PN的三等分点
25、,点P在直线l下方抛物线上, PM,且P只能在x轴的下方, PM,PN,当PM时,则,解得m12.5,m21(舍去), P的坐标为(2.5,1.75);当PM时,则,解得m11,m21(舍去), P的坐标为(1,4) , 综上所述,点P的坐标为(2.5,1.75)或(1,4);(3)如图所示,过点D作DGx轴于G,G点坐标为(4,0),AG=BG=5,AGD=90,AHD=45,点在以G为圆心,以5为半径的圆上,且H在AD下方,设的坐标为(1,n),或(舍去),的坐标为(1,-4);同理当H在AD上方时,H在以(-1,5)为圆心,5为半径的圆上,设H的坐标为(1,t),或(舍去),H的坐标为(
26、1,5);综上所述,点H的坐标为(1,5)或(1,4)【点睛】本题主要考查了求二次函数与x轴的交点,求一次函数解析式,圆周角定理,两点距离公式,解题的关键在于能够熟练掌握相关知识进行求解5、(1)(3,4);(2)OD4,BAO60;(3);(4)或【分析】(1)先由,为边上的高,根据等腰三角形三线合一的性质得出为的中点,则,然后在中运用勾股定理求出,进而得到点的坐标;(2)如图2,当时即,先由为的中点,根据直角三角形斜边上的中线等于斜边的一半得出,则,判定为等边三角形,然后根据等边三角形的性质求出;(3)从到这一时段点运动路线是弧,由,根据弧长的计算公式求解;(4)分两种情况:与轴相切,根据
27、两角对应相等的两三角形相似证明,得出,求出的值;与轴相切,同理,可求出的值【详解】解:(1)如图1,BCAC,CDAB,D为AB的中点,ADAB4在RtCAD中,CD3,点C的坐标为(3,4);(2)如图2,当t4时,AO4,在RtABO中,D为AB的中点,ODAB4,OAODAD4,AOD为等边三角形,BAO60;(3)如图3,从t0到t4这一时段点D运动路线是弧DD1,其中,ODOD14,又D1OD906030,;(4)分两种情况:设AOt1时,C与x轴相切,A为切点,如图4CAOA,CAy轴,CADABO又CDAAOB90,RtCADRtABO,即,解得;设AOt2时,C与y轴相切,B为切点,如图5同理可得,综上可知,当以点C为圆心,CA为半径的圆与坐标轴相切时,t的值为或【点睛】本题考查了圆的综合题,涉及到等腰三角形的性质,勾股定理,直角三角形的性质,等边三角形的判定与性质,弧长的计算,直线与圆相切,切线的性质,相似三角形的判定与性质,综合性较强,有一定难度,其中第(4)问进行分类讨论是解题的关键