《京改版七年级数学下册第六章整式的运算综合测试练习题.docx》由会员分享,可在线阅读,更多相关《京改版七年级数学下册第六章整式的运算综合测试练习题.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版七年级数学下册第六章整式的运算综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是()A3a+2a5a2B8a24a2aC4a23a312a6D(2a2)38a62、若,则的值为
2、( )ABC1D3、下列各式中,能用平方差公式计算的是()A(a+b)(ab)B(a+b)(ab)C(a+b)(ad)D(a+b)(2ab)4、下列式子:x2+2, 5a,0中,单项式的个数是()A6个B5个C4个D3个5、下列运算正确的是( )ABCD6、下列去括号正确的是( )ABCD7、如图,在边长为的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x,a的恒等式是( )ABCD8、对代数式-(a-b)进行去括号运算,结果正确的是( )Aa-bB-a-bCa+bDa+b9、若,求的值是( )A6B8C26D20
3、10、下列运算正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、单项式的系数是_2、已知x2+4x40,则3x2+12x5_3、计算b3b4_4、若将单项式xy2的系数用字母a表示、次数用字母b表示,则ab_5、若a与b互为相反数,c与d互为倒数,则2a+2b+5cd_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中,2、先化简,再求值:,其中,3、(1)如图(1)所示的大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是_(写成平方差的形式)(2)若将图(1)中的阴影部分剪下来,拼成如图(2)所示的长方形,则阴影部分的
4、面积是_(写成多项式相乘的形式)(3)比较两图中的阴影部分的面积,可以得到公式为_(4)应用公式计算:4、计算题:(18)(+3)(6)+(12);3223(9)3+93+(1)2017;先化简,再求值(2x22y2)3(x2y+x2)+3(x2y+y2),其中x1,y25、先化简,再求值:,其中-参考答案-一、单选题1、D【分析】根据合并同类项,同底数幂的除法和乘法法则,积的乘方和幂的乘方法则,逐项计算即可【详解】A.,故该选项错误,不符合题意; B.,故该选项错误,不符合题意;C.,故该选项错误,不符合题意; D. ,故该选项正确,符合题意;故选:D【点睛】本题考查合并同类项,同底数幂的除
5、法和乘法,积的乘方和幂的乘方掌握各运算法则是解答本题的关键2、D【分析】根据同底数幂的除法的逆运算及幂的乘方的逆运算解答【详解】解:,=38=,故选D【点睛】本题考查了同底数幂的除法的逆运算及幂的乘方的逆运算,解题的关键是熟练掌握运算法则3、B【分析】根据平方差公式(a+b)(ab)a2b2对各选项分别进行判断【详解】解:A、(a+b)(ab)(a+b)(a+b)两项都相同,不能用平方差公式计算故本选项不符合题意;B、(a+b)(ab)存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;C、(a+b)(ad)中存在相同项,没有相反项,不能用平方差公式计算故本选项不符合题意;D、
6、(a+b)(2ab)中存在相反项,没有相同项,不能用平方差公式计算故本选项不符合题意;故选:B【点睛】本题考查了平方差公式运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方4、D【分析】根据单项式的定义逐个分析判断即可,单项式是由数或字母的乘积组成的代数式,单独的一个数或一个字母也叫做单项式【详解】解:x2+2, 5a,0中, 5a,0是单项式,共3个,其他的不是单项式故选D【点睛】本题考查了单项式的定义,理解单项式的定义是解题的关键5、C【分析】根据同底数幂的乘除法法则以及积的乘方法则,幂的乘方法则,逐一判断选项,即可【详解】解:A. ,故该选项错误, B.
7、,故该选项错误, C. ,故该选项正确, D. ,故该选项错误,故选C【点睛】本题主要考查同底数幂的乘除法法则以及积的乘方法则,熟练掌握上述法则是解题的关键6、B【分析】根据去括号法则分别去括号即可【详解】解:A、,故A错误;B、,故B正确;C、,故C错误;D、,故D错误故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“”,去括号后,括号里的各项都不改变符号;括号前是“”,去括号后,括号里的各项都改变符号运用这一法则去掉括号7、C【分析】根据公式分别计算两个图形的面积,由此得到答案【详解】解:正方形中阴影部分的面积为,平行四边形
8、的面积为x(x+2a),由此得到一个x,a的恒等式是,故选:C【点睛】此题考查了平方差公式与几何图形,正确掌握图形面积的计算方法是解题的关键8、D【分析】根据去括号法则进行计算即可【详解】解:代数式-(a-b)进行去括号运算,结果是a+b故选:D【点睛】本题考查了去括号法则,解题关键是明确括号前面是负号时,括号内各项都变号9、B【分析】根据题意利用完全平方和公式可得,进而整体代入,即可求出的值.【详解】解:,.故选:B.【点睛】本题考查代数式求值,熟练掌握运用完全平方和公式进行变形与整体代入计算是解题的关键.10、D【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完
9、全平方公式分别计算得出答案【详解】解:A、,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,正确;故选:D【点睛】本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键二、填空题1、【分析】单项式的系数指的是单项式中的数字因式,观察所给单项式,进而得出系数【详解】解:中为数字因式即为单项式的系数故答案为:【点睛】本题考察了单项式的系数解题的关键在于区分单项式中的数字因式与字母因式2、7【分析】把已知条件变形为x2+4x=4,然后利用整体代入法即可求得代数式的值【详解】x2+4x40x2+4x=43x2+12x53(x2
10、+4x)5345=7故答案为:7【点睛】本题考查了用整体代入法求代数式的值,关键是抓住所求值的代数式与已知代数式之间的关系,从而用整体代入法即可解决3、【分析】根据同底数幂的乘法法则即可得【详解】解:,故答案为:【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题关键4、-1【分析】先根据单项式次数和次数的定义求出a、b的值,然后代值计算即可【详解】解:单项式xy2的系数用字母a表示、次数用字母b表示,a1,b3,代入运算即可ab(1)31故答案为:1【点睛】本题主要考查了单项式次数和系数的定义,代数式求值,有理数的乘方,熟知单项式的系数和次数的定义是解题的关键:表示数或字母的积的式子叫做
11、单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数5、5【分析】根据互为相反数的和为0,互为倒数的积为1,代入计算即可【详解】解:a与b互为相反数,c与d互为倒数,2a+2b+5cd;故答案为:5【点睛】本题考查了相反数和倒数,有理数的运算,解题关键是明确互为相反数的和为0,互为倒数的积为1三、解答题1、;【解析】【分析】去括号得,将代入求值即可【详解】解:原式 , 当时,原式【点睛】本题考查了整式加减中的去括号解题的关键在于去括号时正负号的确定2、,-20【解析】【分析】原式去括号,再合并同类项化简,继而将a、b的值代入计算可得
12、【详解】解:原式当,时,原式【点睛】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则3、(1)a2b2;(2)(ab)(ab);(3)(ab)(ab)a2b2;(4)【解析】【分析】(1)根据面积的和差,可得答案;(2)根据长方形的面积公式,可得答案;(3)根据图形割补法,面积不变,可得答案;(4)根据平方差公式计算即可【详解】解:(1)如图(1)所示,阴影部分的面积是a2b2,故答案为:a2b2;(2)根据题意知该长方形的长为ab、宽为ab,则其面积为(ab)(ab),故答案为:(ab)(ab);(3)由阴影部分面积相等知(ab)(ab)a2b2,故答案为:(ab)(ab)
13、a2b2;(4)【点睛】本题考查的是平方差公式的推导和运用,灵活运用平方差公式、掌握数形结合思想是解题的关键4、27;24;2;18;x2+y2,3【解析】【分析】将减法统一成加法,然后根据有理数加法交换律和加法结合律进行简便计算;将除法统一成乘法,然后根据有理数乘法交换律和乘法结合律进行简便计算;使用乘法分配律进行简便计算;先算乘方,然后先算小括号里面的,再算括号外面的;原式去括号,合并同类项进行化简,然后代入求值【详解】解:原式18+(3)+6+(12)(18)+(12)+(3)+630+327;原式626(6)262(12)24;原式48+4848+4844+5636+262;原式98(
14、93+93)1980118;原式2x22y23x2y3x2+3x2y+3y2x2+y2,当x1,y2时,原式(1)2+221+43【点睛】此题主要考查了有理数的混合运算,整式的加减化简求值,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算);掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“”号,去掉“”号和括号,括号里的各项不变号;括号前面是“”号,去掉“”号和括号,括号里的各项都变号)是解题关键5、,【解析】【分析】先去括号,然后合并同类项,最后将代入求解即可【详解】解:,当时,原式【点睛】此题考查了整式的混合运算化简求值问题,熟练掌握去括号、合并同类项法则是解本题的关键