《【难点解析】2022年中考数学真题模拟测评-(A)卷(含答案及解析).docx》由会员分享,可在线阅读,更多相关《【难点解析】2022年中考数学真题模拟测评-(A)卷(含答案及解析).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年中考数学真题模拟测评 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x的不等式组的解集是3x4,则a+b的值为()A5B8C11
2、D92、下列命题正确的是A零的倒数是零B乘积是1的两数互为倒数C如果一个数是,那么它的倒数是D任何不等于0的数的倒数都大于零3、的相反数是( )ABCD34、若数a使关于x的方程的解为非负数,使关于y的不等式组无解,则所有满足条件的整数a的值之和为( )A7B12C14D185、如图,点C、D分别是线段AB上两点(,),用圆规在线段CD上截取,若点E与点F恰好重合,则( )A4B4.5C5D5.56、已知关于x,y的方程组和的解相同,则的值为( )A1B1C0D20217、在实数范围内分解因式2x28x+5正确的是()A(x)(x)B2(x)(x)C(2x)(2x)D(2x4)(2x4+)8、
3、下列方程中,属于二元一次方程的是()Axy31B4x2y3Cx+4Dx24y19、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式()A10x5(20x)125B10x+5(20x)125C10x+5(20x)125D10x5(20x)12510、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是()A轴B轴C直线(直线上各点横坐标均为1)D直线(直线上各点纵坐标均为1) 线 封 密 内 号学级年名姓 线 封 密 外 第卷(非选择题 70分)二、填空
4、题(5小题,每小题4分,共计20分)1、观察下列图形排列规律(其中是三角形,是正方形,是圆),若第一个图形是正方形,则第2022个图形是_(填图形名称)2、若等腰三角形的一个外角等于80,则与它不相邻的两个内角的度数分别是 _;3、 “x与2的差不大于3”用不等式表示为_4、如图,在RtABC中,ACB90,点D是边AB的中点,连接CD,将BCD沿直线CD翻折得到ECD,连接AE若AC6,BC8,则ADE的面积为_5、如图,在半径为5的O中,弦AB6,OCAB于点D,交O于点C,则CD_三、解答题(5小题,每小题10分,共计50分)1、观察以下等式:,(1)依此规律进行下去,第5个等式为_,猜
5、想第n个等式为_;(2)请利用分式的运算证明你的猜想2、如图,在长方形中,延长到点,使,连接动点从点出发,沿着以每秒1个单位的速度向终点运动,点运动的时间为秒(1)的长为 ;(2)连接,求当为何值时,;(3)连接,求当为何值时,是直角三角形;(4)直接写出当为何值时,是等腰三角形3、若关于x的一元二次方程有两个相等的实数根(1)用含m的代数式表示n;(2)求的最小值4、解不等式:25、如图1,点A、O、B依次在直线MN上,如图2,现将射线OA绕点O沿顺时针方向以每秒4的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6的速度旋转,当其中一条射线回到起始位置时,运动停止,直线MN保持不动,设旋转时
6、间为ts(1)当t3时,AOB ;(2)在运动过程中,当射线OB与射线OA垂直时,求t的值; 线 封 密 内 号学级年名姓 线 封 密 外 (3)在旋转过程中,是否存在这样的t,使得射线OB、射线OA和射线OM,其中一条射线把另外两条射线的夹角(小于180)分成2:3的两部分?如果存在,直接写出答案;如果不存在,请说明理由-参考答案-一、单选题1、C【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可【详解】解:解不等式x-a1,得:xa+1,解不等式x+5b,得:xb-5,不等式组的解集为3x4,a+1=3,b-5=4,a=2,b=9,则a+b=2+9=11,故
7、选:C【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键2、B【分析】根据倒数的概念、有理数的大小比较法则判断【详解】解:、零没有倒数,本选项说法错误;、乘积是1的两数互为倒数,本选项说法正确;、如果,则没有倒数,本选项说法错误;、的倒数是,则任何不等于0的数的倒数都大于零说法错误;故选:【点睛】本题考查了有理数的乘法及倒数的概念,熟练掌握倒数概念是关键3、D【分析】根据只有符号不同的两个数是互为相反数解答即可【详解】解:的相反数是3,故选D【点睛】本题考查了相反数的定义,只有符号不同的两个数
8、是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数4、C【分析】第一步:先用a的代数式表示分式方程的解再根据方程的解为非负数,x-30,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m的取值范围进行综合考虑确定最后m的取值范围,最后根据a为整数确定最后结果【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:,2a-8=x-3,x=2a-5,方程的解为非负数,x-30,解得a且a4,解不等式组得:,不等式组无解,5-2a-7,解得a6,a的取值范围:a6且a4,满足条件的整数a的值为3、5、6,3+5+6=14,故选:C
9、【点睛】本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m的取值范围是解题关键5、A【分析】根据题意可得,再由即可得到答案【详解】解:CE=AC,DF=BD,点E与点F恰好重合,CE=AC,DE=BD,故选A【点睛】本题主要考查了与线段中点有关的计算,解题的关键在于能够根据题意得到,6、B【分析】联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求【详解】解:联立得:,解得:,则有, 线 封 密 内 号学级年名姓 线 封 密 外 解得:,故选:B【点睛】此
10、题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值7、B【分析】解出方程2x2-8x+5=0的根,从而可以得到答案【详解】解:方程2x2-8x+5=0中,a=2,b=-8,c=5,=(-8)2-425=64-40=240,x=,2x2-8x+5=2(x)(x),故选:B【点睛】本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键8、B【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程【详解】解:A、xy-3=1,是二元二次方程,故本选项不合题意;B、4x-2y=3,属于二元一次方程,故本选项
11、符合题意;C、x+4,是分式方程,故本选项不合题意;D、x2-4y=1,是二元二次方程,故本选项不合题意;故选:B【点睛】此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:首先是整式方程方程中共含有两个未知数所有未知项的次数都是一次不符合上述任何一个条件的都不叫二元一次方程9、D【分析】根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题【详解】解:由题意可得,10x-5(20-x)125,故选:D【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式10、C【分析】利用成轴对称的两个点的坐标的特征,即
12、可解题【详解】 线 封 密 内 号学级年名姓 线 封 密 外 根据A点和B点的纵坐标相等,即可知它们的对称轴为故选:C【点睛】本题考查坐标与图形变化轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键二、填空题1、圆【分析】三角形、正方形、圆的排列规律是七个为一循环用2022除以7,商为组数,如果不能整除,再根据余数即可判定第2022个图形是什么图形【详解】解:20227288(组)6(个)第2022个图形是第289组的第6个图形,是圆故答案为:圆【点睛】解答此题的关键是找出这些图形的排列规律,几个图形为一循环(组)2、40,40度,40度【分析】先根据平角等于180求出与这个外角相邻的内
13、角的度数,再根据等腰三角形两底角相等求解【详解】解:等腰三角形的一个外角等于80,与这个外角相邻的内角是180-80=100,100的内角是顶角,(180-100)=40,另两个内角是40,40故答案为:40,40【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键3、x-23【分析】首先表示出x与2的差为(x-2),再小于等于3,列出不等式即可【详解】解:由题意可得:x-23故答案为:x-23【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是抓住关键词,选准不等号4、6.72【分析】连接BE,延长CD交BE与点H,作CFAB,垂足为F首先证明DC垂直平分线段BE
14、,ABE是直角三角形,利用三角形的面积求出EH,得到BE的长,在RtABE中,利用勾股定理即可解决问题【详解】解:如图,连接BE,延长CD交BE与点H,作CFAB,垂足为F 线 封 密 内 号学级年名姓 线 封 密 外 ACB=90,AC=6,BC=8AB=10,D是AB的中点,AD=BD=CD=5,SABC=ACBC=ABCF,68=10CF,解得CF=4.8将BCD沿直线CD翻折得到ECD,BC=CE,BD=DE,CHBE,BH=HEAD=DB=DE,ABE为直角三角形,AEB=90,SECD=SACD,DCHE=ADCF,DC=AD,HE=CF=4.8BE=2EH=9.6AEB=90,A
15、E=2.8SADE=EHAE=2.84.8=6.72故答案为:6.72【点睛】本题考查了翻折变换(折叠问题),直角三角形斜边上的中线的性质,勾股定理,三角形的面积等知识,解题的关键是学会利用面积法求高,属于中考常考题型5、【分析】连接OA,先利用垂径定理得出AD的长,再由勾股定理得出OD的长即可解答【详解】解:连接OA, AB=6,OCAB于点D, AD=AB=6=3, O的半径为5, , CD=OC-OD=5-4=1 故答案为:1【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查的是垂径定理及勾股定理,解答此题的关键是作出辅助线构造出直角三角形,再利用勾股定理求解三、解答题1、
16、(1),(2)见解析【分析】(1)根据题目中给出的等式,即可写出第5个等式,并写出第的等式;(2)根据分式的乘法和加法可以证明猜想的正确性(1)解:由题目中的等式可得,第5个等式为:,第个等式是,故答案为:,;(2)证明:左边,右边,左边右边,故猜想正确【点睛】本题考查分式的混合运算、数字的变化类,解答本题的关键是明确题意,写出相应的等式,并证明猜想的正确性2、(1)5;(2)秒时,;(3)当秒或秒时,是直角三角形;(4)当秒或秒或秒时,为等腰三角形【分析】(1)根据长方形的性质及勾股定理直接求解即可;(2)根据全等三角形的性质可得:,即可求出时间t;(3)分两种情况讨论:当时,在两个直角三角
17、形中运用两次勾股定理,然后建立等量关系求解即可;当时,此时点P与点C重合,得出,即可计算t的值;(4)分三种情况讨论:当时,当时,当时,分别结合图形,利用各边之间的关系及勾股定理求解即可得【详解】解:(1)四边形ABCD为长方形,在中,故答案为:5;(2)如图所示:当点P到如图所示位置时, 线 封 密 内 号学级年名姓 线 封 密 外 ,仅有如图所示一种情况,此时,秒时,;(3)当时,如图所示:在中,在中,解得:;当时,此时点P与点C重合,;综上可得:当秒或秒时,是直角三角形;(4)若为等腰三角形,分三种情况讨论:当时,如图所示:,;当时,如图所示:,;当时,如图所示: 线 封 密 内 号学级
18、年名姓 线 封 密 外 ,在中,即,解得:,;综上可得:当秒或秒或秒时,为等腰三角形【点睛】题目主要考查勾股定理解三角形,等腰三角形的性质,全等三角形的性质等,理解题意,分类讨论作出相应图形是解题关键3、(1)(2)【分析】(1)由两个相等的实数根知,整理得n的含m的代数式(2)对进行配方,然后求最值即可(1)解:由题意知(2)解:当时,的值最小,为的最小值为【点睛】本题考查了一元二次方程的根,一元二次代数式的最值解题的关键在于配完全平方4、x【分析】将不等式变形,先去分母,再去括号,移项、合并同类项即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:不等式整理得,去分母,得2(2
19、x+1)-123(3x-2)去括号,得4x+2-129x-6移项,得4x-9x-6+12-2合并同类项,得-5x4,系数化为1,得x【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变5、(1)150(2)9或27或45;(3)t为、【分析】(1)求出AOM及BON的度数可得答案;(2)分两种情况:当时,当时,根据OA与OB重合前,OA与OB重合后,列方程求解; (3)射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180)分成2:3的两部分有以下九种情况:OA分BOM为2:3时,O
20、A分BOM为3:2时,OB分AOM为2:3时,OB分AOM为3:2时,OM分AOB为2:3时, OB分AOM为2:3时,OB分AOM为3:2时, OA分BOM为3:2时, OA分BOM为2:3时,列方程求解并讨论是否符合题意(1)解:当t3时,AOM=12,BON=18,AOB180-AOM-BON=150,故答案为:150;(2)解:分两种情况:当时,当OA与OB重合前,得t=9; 当OA与OB重合后,得t=27;当时,当OA与OB重合前,得t=45; 当OA与OB重合后,得t=63(舍去);故t的值为9或27或45;(3)解:射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角
21、(小于180)分成2:3的两部分有以下九种情况:OA分BOM为2:3时,4t:(180-4t-6t)=2:3,解得:t=;OA分BOM为3:2时, 线 封 密 内 号学级年名姓 线 封 密 外 4t:(180-4t-6t)=3:2,解得:t=;OB分AOM为2:3时,得t=;OB分AOM为3:2时,得t=;OM分AOB为2:3时,得t=54,此时180,故舍去; OB分AOM为2:3时,得,此时,故舍去;OB分AOM为3:2时,得, 此时,故舍去; 线 封 密 内 号学级年名姓 线 封 密 外 OA分BOM为3:2时,得, OA分BOM为2:3时,得t=67.5(舍去)综上,当t的值分别为、时,射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180)分成2:3的两部分【点睛】此题考查了角的计算,角的旋转,几何图形中角度的度数比,列一元一次方程,正确画出图形求角度值是解题的关键