《2021-2022学年度北师大版八年级数学下册第四章因式分解单元测试试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版八年级数学下册第四章因式分解单元测试试卷(含答案详解).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第四章因式分解单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列分解因式正确的是( )ABCD2、已知abc为ABC的三条边边长,且满足等式a22b2c22ab2bc0,则
2、ABC的形状为( )A等腰三角形B等边三角形C直角三角形D钝角三角形3、若a2b+2,b2a+2,(ab)则a2b22b+2的值为( )A1B0C1D34、下列式子从左到右的变形中,属于因式分解的是( )ABCD5、下列等式从左到右的变形,属于因式分解的是( )A 2x1B(ab)(ab)C4x4D16、若、为一个三角形的三边长,则式子的值( )A一定为正数B一定为负数C可能是正数,也可能是负数D可能为07、把多项式x32x2+x分解因式结果正确的是( )Ax(x22x)Bx2(x2)Cx(x+1)(x1)Dx(x1)28、多项式分解因式的结果是( )ABCD9、下列各式中,能用完全平方公式分
3、解因式的是()ABCD 10、下列各式从左到右的变形中,是因式分解的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:a32a2b+ab2_2、若多项式5x217x12可因式分解成(xa)(bxc),其中a、b、c均为整数,则a,b,c的中位数是_3、单项式4m2n2与12m3n2的公因式是_4、因式分解:_5、把多项式分解因式结果是_三、解答题(5小题,每小题10分,共计50分)1、将下列多项式进行因式分解:(1);(2)2、分解因式(1) (2)(3)3、分解因式:4xy24x2yy34、阅读下列因式分解的过程,再回答所提出的问题:1+x+x
4、(x+1)+x(x+1)2=(1+x)1+x+x(x+1)=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是 ,共应用了 次(2)若分解1+x+x(x+1)+x(x+1)2+x(x+1)2021,则需应用上述方法 次,结果是 (3)分解因式:1+x+x(x+1)+x(x+1)2+x(x+1)n(n为正整数)结果是 5、 ((1)(2)小题计算,(3)(4)小题因式分解)(1);(2)(x2y)(3x+2y);(3)9(xy)+4(yx) ; (4) a+2x+ -参考答案-一、单选题1、C【分析】根据因式分解的方法逐个判断即可【详解】解:A. ,原选项错误,不符合题意;B. ,原
5、选项错误,不符合题意;C. ,正确,符合题意;D. ,原选项错误,不符合题意;故选:C【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解2、B【分析】首先利用分组分解法对已知等式的左边进行因式分解,再根据三角形的三边关系得到,从而得到答案【详解】解:a22b2c22ab2bc0;为等边三角形故选B【点睛】本题考查了因式分解的应用、非负数的性质、等边三角形的判断,以及灵活利用因式分解建立与方程之间的关系来解决问题3、D【分析】由a2=b+2,b2=a+2,且ab,可得a+b=1,将a2-b2-2b+2变形为(a+b)(a-b)2b+2,再代入计算即可求解【详解】解:a
6、2=b+2,b2=a+2,且ab,a2b2=ba,即(a+b)(a-b)=b-a,a+b=1,a2-b2-2b+2=(a+b)(a-b)2b+2=ba-2b+2=-(a+b)+2=1+2=3故选:D【点睛】本题考查了代数式求值,解题的关键是求得a+b=1,将a2-b2-2b+2变形为(a+b)(a-b)2b+2是解题的关键4、B【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;是因式分解,故B符合题意;右边不是整式的积的形式,不是因式分解,故C不符合题意;右边不是整式的积的形式,不是因式分解,故D不符合题意;故选B
7、【点睛】本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.5、C【分析】根据因式分解的定义和方法逐一判断即可【详解】2x12x1,A不是因式分解,不符合题意;(ab)(ab)不符合因式分解的定义,B不是因式分解,不符合题意;4x4,符合因式分解的定义,C是因式分解,符合题意;1,不符合因式分解的定义,D不是因式分解,不符合题意;故选C【点睛】本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键6、B【分析】先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解【详解】解
8、:原式=(a-c+b)(a-c-b),两边之和大于第三边,两边之差小于第三边,a-c+b0,a-c-b0,两数相乘,异号得负,代数式的值小于0故选:B【点睛】本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和第三边,任意两边之差第三边7、D【分析】先提取公因式,再按照完全平方公式分解即可得到答案.【详解】解:x32x2+x 故选D【点睛】本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.8、B【分析】先提取公因式a,再根据平方差公式进行二次分解平方差公式:a2-b2=(a+b)(a-b)【详解】解:ax2-ay2=a(x2-y2)=
9、a(x+y)(x-y)故选:B【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底9、D【分析】根据完全平方公式法分解因式,即可求解【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键10、D【分析】因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式进行因式分解,根据定义逐一判断即可.【详解】解:是
10、整式的乘法,故A不符合题意;不是化为整式的积的形式,故B不符合题意;不是化为整式的积的形式,故C不符合题意;是因式分解,故D符合题意;故选D【点睛】本题考查的是因式分解的含义,掌握“利用因式分解的定义判断是否是因式分解”是解题的关键.二、填空题1、【分析】先提取公因式a,再利用完全平方公式因式分解【详解】解:,故答案为:【点睛】本题考查综合利用提公因式法和公式法因式分解一般有公因式先提取公因式,再看是否能用公式法因式分解2、4【分析】首先利用十字交乘法将5x2+17x-12因式分解,继而求得a,b,c的值【详解】利用十字交乘法将5x2+17x-12因式分解,可得:5x2+17x-12=(x+4
11、)(5x-3)=(xa)(bxc),的中位数是4a,b,c的中位数是4故答案为:4【点睛】本题考查十字相乘法分解因式以及中位数,掌握十字相乘法是正确分解因式的前提,确定a、b、c的值是得出正确答案的关键3、4m2n2【分析】找到系数的公共部分,再找到因式的公共部分即可【详解】解:由于4和12的公因数是4,m2n2和m3n2的公共部分为m2n2,所以4m2n2与12m3n2的公因式是4m2n2故答案为4m2n2【点睛】本题主要考查公因式,熟练掌握如何去找公因式是解题的关键4、【分析】先提取公因式,再利用平方差公式计算即可得出答案【详解】解:【点睛】本题考查的是因式分解,比较简单,需要熟练掌握因式
12、分解的方法以及步骤5、【分析】利用平方差公式分解得到结果,即可做出判断【详解】解:= 故答案为:【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键三、解答题1、(1);(2)【分析】(1)提取公因式然后利用完全平方公式进行因式分解即可;(2)提取公因式然后利用平方差公式进行因式分解即可【详解】解:(1)原式;(2)原式【点睛】此题考查了因式分解,涉及了平方差公式和完全平方公式,解题的关键是掌握因式分解的方法2、(1);(2);(3)【分析】(1)原式提取公因式后,利用平方差公式分解即可;(2)原式先利用完全平方公式,再利用平方差公式分解即可;(3)原式利用平方差公式分解即
13、可【详解】解:(1)a;(2);(3)【点睛】本题考查的是因式分解,掌握提公因式与公式法,分组分解法分解因式是解题的关键3、-y(2x-y)2【分析】先提取公因式-y,再利用完全平方公式分解因式即可得答案【详解】4xy24x2yy3=-y(4x2-4xy+y2)=-y(2x-y)2【点睛】本题考查用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止4、(1)提公因式法;2;(2)2021;(x+1)2022;(3)(1+x)n+1【分析】(1)直接利用已知解题方法分析得出答案;(2)结合(1)中解题方法得出答案;
14、(3)结合(1)中解题方法得出答案【详解】解:(1)上述分解因式的方法是提公因式法,共应用了2次;故答案为:提公因式法; 2;(2)若分解1+x+x(x+1)+x(x+1)2+x(x+1)2021,则需应用上述方法2021次,结果是(x+1)2022;故答案为:2021;(x+1)2022;(3)1+x+x(x+1)+x(x+1)2+x(x+1)n=(1+x)n+1故答案为:(1+x)n+1【点睛】此题主要考查了提取公因式法以及数字变换规律,正确得出次数变化规律是解题关键5、(1)-5;(2)28;(3);(4)a【分析】(1)根据=2, ,整理计算即可;(2)利用多项式的乘法法则,完全平方公式展开,合并同类项即可;(3)根据(y-x)=-(x-y),提取公因式后,套用平方差公式分解即可;(4) 先提取公因式a,后套用和的完全平方公式分解即可【详解】解:(1) =2+1-9+1-5;(2)(x2y)(3x+2y)3+2xy6xy4+4xy428;(3)9(xy)+4(yx)= =;(4)a+2x+a(+2ax+)a【点睛】本题考查了绝对值,零指数幂,负整数指数幂,完全平方公式,因式分解,熟练掌握零指数幂,负整数指数幂,完全平方公式和公式法分解因式是解题的关键