《2022年精品解析沪科版九年级数学下册第26章概率初步达标测试练习题(精选含解析).docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪科版九年级数学下册第26章概率初步达标测试练习题(精选含解析).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第26章概率初步达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为().ABCD12、
2、下列事件是随机事件的是( )A抛出的篮球会下落B经过有交通信号灯的路口,遇到红灯C任意画一个三角形,其内角和是D400人中有两人的生日在同一天3、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5220.5190.5210.520下面有3个推断:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在0.5
3、20附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次其中所有合理推断的序号是( )ABCD4、下列事件是必然事件的是()A明天一定是晴天B购买一张彩票中奖C小明长大会成为科学家D13人中至少有2人的出生月份相同5、下列事件为随机事件的是( )A四个人分成三组,恰有一组有两个人B购买一张福利彩票,恰好中奖C在一个只装有白球的盒子里摸出了红球D掷一次骰子,向上一面的点数小于76、中国象棋文化历史久远在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到
4、达的所有位置已用“”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是( )ABCD7、下列词语所描述的事件,属于必然事件的是( )A守株待兔B水中捞月C水滴石穿D缘木求鱼8、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9150.9050.8970.902A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B可以用试验次数累计最多时
5、的频率作为概率的估计值C由此估计这种幼苗在此条件下成活的概率约为0.9D如果在此条件下再移植这种幼苗20000株,则必定成活18000株9、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同则在下列说法中正确的是( )A无放回的从中连续摸出三个红球是随机事件B从中摸出一个棕色球是随机事件C无放回的从中连续摸出两个白球是不可能事件D从中摸出一个红色球是必然事件10、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾”你认为池塘主的做法( )A有道
6、理,池中大概有1200尾鱼B无道理C有道理,池中大概有7200尾鱼D有道理,池中大概有1280尾鱼第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为,那么袋中的球共有_个2、现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字1,2,3;B袋中的三个小球上分别标记数字2,3,4这六个小球除标记的数字外,其余完全相同将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,则摸出的这两个小球标记的数字之和为5的概率为_3、真实惠举行抽奖活动,在一个封闭的
7、盒子里有400张形状一模一样的纸片,其中有20张是一等奖,摸到二等奖的概率是10,摸到三等奖的概率是20%,剩下是“谢谢惠顾”,则盒子中有“谢谢惠顾”_张4、初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性_(填“大”或“小”)5、如图,一个转盘,转盘上共有红、白两种不同的颜色,已知红色区域的圆心角为,自由转动转盘,指针落在白色区域的概率是_三、解答题(5小题,每小题10分,共计50分)1、邮票素有“国家名片”之称,方寸之间,包罗万象为宣传2022年北京冬奥会,中国邮政发行了一套冬奥会邮票,其中有一组展现雪上运动的邮票,如图
8、所示:某班级举行冬奥会有奖问答活动,答对的同学可以随机抽取邮票作为奖品(1)在抢答环节中,若答对一题,可从4枚邮票中任意抽取1枚作为奖品,则恰好抽到“冬季两项”的概率是_;(2)在抢答环节中,若答对两题,可从4枚邮票中任意抽取2枚作为奖品,请用列表或画树状图的方法,求恰好抽到“高山滑雪”和“自由式滑雪”的概率2、新冠病毒在全球肆虐,疫情防控刻不容缓某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生开展新冠疫情防控知识测试(满分为10分)学校学生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计下面提供了部分信息抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,
9、9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5抽取的40名学生成绩分析表:年级七年级八年级平均分88.1众 数8b中位数a8方 差1.91.89请根据以上信息,解答下列问题:(1)直接写出上表中a,b的值;(2)该校七、八年级共有学生2000人,估计此次测试成绩不低于9分的学生有多少人?(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率3、同时掷两枚质地均匀的骰子,两枚骰子分别记为第1枚和第2枚,下表列举出了所有可能出现的结果第2枚第1枚1234561(1,1)(
10、2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1)由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性_(填“相等”或者“不相等”);(2)计算下列事件的概率:两枚骰子的点数相同;至少有一枚骰子的点数为3.4、 “双减”意见下,各级教育行政部门都对课后作业作了更
11、明确的要求为了解某学校七年级学生课后作业时长情况,某部门针对某校七年级学生进行了问卷调查,调查结果分四类显示:A表示“40分钟以内完成”,B表示“4070分钟以内完成”,C表示“7090分钟以内完成”,D表示“90分钟以上完成”根据调查结果,绘制成两种不完整的统计图请结合统计图,回答下列问题(1)这次调查的总人数是 人;(2)扇形统计图中,B类扇形的圆心角是 ;(3)在D类学生中,有2名男生和2名女生,再需从这4名学生中抽取2名学生作进一步访谈调查,请用树状图或列表的方法,求所抽2名学生恰好是1名男生和1名女生的概率5、某水果公司以9元/千克的成本从果园购进10000千克特级柑橘,在运输过程中
12、,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录特级柑橘的售价(元/千克)1415161718特级柑橘的日销售量(千克)1000950900850800 (1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为_千克;(2)按此市场调节的观律,若特级柑橘的售价定为16.5元/千克,估计日销售量,并说明理由考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘(只售完好的柑橘),且售价保持不变求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由
13、-参考答案-一、单选题1、C【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率本题球的总数为1+2=3,红球的数目为1【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:13=故选:C【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=2、B【分析】根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可【详解】A.抛出的篮球会下落是必然事件,故此选项不符合题意;B.经过有交通信号灯的路口,遇到红
14、灯是随机事件,故此选项符合题意; C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;故选B【点睛】此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件3、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案【详解】解:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;随着试
15、验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次正确;故选:C【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答4、D【分析】必然事件是在一定条件下,一定会发生的事件;根据定义对选项进行判断,得出结果【详解】解:A、B、C选项中的事件都是随机事件,不符合要求;D选项中13人中至少有2人的出生月份相同是必然事件,符合要求;故选D【点睛】本题考查了必然事件解题的关键在于正确理解必然事件与随机
16、事件的定义5、B【分析】根据事件发生的可能性大小判断【详解】解:A、四个人分成三组,恰有一组有两个人,是必然事件,不合题意;B、购买一张福利彩票,恰好中奖,是随机事件,符合题意;C、在一个只装有白球的盒子里摸出了红球,是不可能事件,不合题意;D、掷一次骰子,向上一面的点数小于7,是必然事件,不合题意;故选:B【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件6、C【分析】用“-”(图中虚线)的上方的黑点个数除以所有黑点的个数即可求得答案【详
17、解】解:观察“馬”移动一次能够到达的所有位置,即用“”标记的有8处,位于“-”(图中虚线)的上方的有2处,所以“馬”随机移动一次,到达的位置在“-”上方的概率是,故选:C【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=7、C【分析】根据必然事件就是一定发生的事件逐项判断即可【详解】A守株待兔是随机事件,故该选项不符合题意;B水中捞月是不可能事件,故该选项不符合题意;C水滴石穿是必然事件,故该选项符合题意;D缘木求鱼是不可能事件,故该选项不符合题意故选:C【点睛】本题主要考查了必然事件的概念,掌握必然
18、事件指在一定条件下一定发生的事件是解答本题的关键8、D【分析】根据频率估计概率逐项判断即可得【详解】解:A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D【点睛】本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键9、A【分析】随机事件是在一定条件下,可能发生,也可能不发生的事件,必然事件是一定会发生的
19、,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可【详解】无放回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确故选A【点睛】本题考查随机事件,必然事件,不可能事件,掌握事件识别方法与分类标准是解题关键10、A【分析】
20、设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解【详解】解:设池中大概有鱼x尾,由题意得:,解得:,经检验:是原方程的解;池塘主的做法有道理,池中大概有1200尾鱼;故选A【点睛】本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键二、填空题1、10【分析】设袋中共有x个球,再由袋中只装有4个红球,且摸出红球的概率为求出x的值即可【详解】解:设袋中共有x个球,袋中只装有4个红球,且摸出红球的概率为,解得x=10经检验,x=10是分式方程的解,且符合题意,故答案为:10【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的
21、结果数的商是解答此题的关键2、【分析】先列表,再利用表格信息得到所有的等可能的结果数与符合条件的结果数,再利用概率公式进行计算即可.【详解】解:列表如下:12321+2=32+2=42+3=533+1=43+2=53+3=644+1=54+2=64+3=7可得:所有的等可能的结果数有9种,而和为5的结果数有3种,摸出的这两个小球标记的数字之和为5的概率为: 故答案为:【点睛】本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“列表或画树状图的方法”是解本题的关键.3、260【分析】先求出一等奖的概率,然后利用频数=总数概率求解即可【详解】解:由题意得:一等奖的概率=,盒子中有“
22、谢谢惠顾”张,故答案为:260【点睛】本题主要考查了利用概率求频数,解题的关键在于能够熟练掌握频数=总数概率4、大【分析】分别求得找到男生和找到女生的概率即可比较出可能性的大小【详解】解:初一(2)班共有学生44人,其中男生有30人,女生14人,找到男生的概率为:,找到女生的概率为:而 找到男生的可能性大,故答案为:大【点睛】本题考查的是简单随机事件的概率,掌握“利用概率公式求解简单随机事件的概率”是解本题的关键,随机事件的概率等于符合条件的情况数除以所有的情况数.5、【分析】先确定白色部分的面积是整个圆的面积的,结合几何概率的含义可得答案.【详解】解:由题意得:白色部分的圆心角为: 所以:
23、所以自由转动转盘,指针落在白色区域的概率是,故答案为:【点睛】本题考查的是简单随机事件的概率,几何概率的计算,掌握“几何概率的计算与图形面积的关系”是解本题的关键.三、解答题1、(1);(2)见解析,【分析】(1)利用简单概率公式计算即可;(2)利用画树状图或列表法,计算【详解】(1)事件一共有4种等可能性,抽到“冬季两项”这个事件只有1种可能性,恰好抽到“冬季两项”的概率是,故答案为:; (2)解:直接使用图中的序号代表四枚邮票方法一:由题意画出树状图由树状图可知,所有可能出现的结果共有12种,即,并且它们出现的可能性相等 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种
24、,即或方法二:由题意列表第二枚第一枚由表可知,所有可能出现的结果共有12种,即,并且它们出现的可能性相等 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即或 【点睛】本题考查了简单概率计算,画树状图或列表法计算概率,熟练画树状图或列表是解题的关键2、(1)(2)(3)【分析】(1)根据众数和中位数的概念求解可得;(2)用总人数乘以样本中七、八年级不低于9分的学生人数和所占比例即可得,(3)根据列表法求概率即可(1)根据抽取的20名七年级学生的成绩找到第10个和第11个成绩都是8,则中位数为8,即,根据条形统计图可知9分的有6人,人数最多,则众数为9,即(2)解:此次测试
25、成绩不低于9分的七年级学生有8人,八年级学生有9人此次测试成绩不低于9分的学生有(人)(3)解:七年级得10分的有2人,八年级得10分的有3人设七年级的2人分别为,八年级的3人分别列表如下,根据列表可知,共有20种等可能结果,其中1名七年级学生和1名八年级学生的情形有12钟则所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率为【点睛】本题考查了求中位数,众数,根据样本估计总体,列表法求概率,掌握以上知识是解题的关键3、(1)相等;(2);【分析】(1)根据两枚骰子质地均匀,可知同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等;(2)先根据表格得到两枚骰子的点数相同(记为
26、事件A)的结果有6种,然后利用概率公式求解即可;先根据表格得到至少有一枚骰子的点数为3(记为事件B)的结果有11种,然后利用概率公式求解即可【详解】解:(1)两枚骰子质地均匀,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等; 故答案为:相等;(2)由表格可知两枚骰子的点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),由表格可知至少有一枚骰子的点数为3(记为事件B)的结果有11种,【点睛】本题主要考查了列表法求解概率,熟知列表法求解概率是解题的关键4、(1)40;(2)108;(3)【分析】(1)根据A类别人数及其所占
27、百分比可得被调查的总人数;(2)用360乘以B类别人数所占比例即可;(3)画树状图,共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果数为8种,再根据概率公式求解即可【详解】解:(1)参加这次调查的学生总人数为615%=40(人);故答案为:40;(2)扇形统计图中,B部分扇形所对应的圆心角是360=108,故答案为:108;(3)画树状图为:共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果为8种,所抽取的2名学生恰好是1名男生和1名女生的概率为【点睛】本题考查了列表法与树状图法,正确画树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比也考查了统计图5、(
28、1)9000千克;(2)当售价定为16.5元/千克,日销售量为875千克,理由见解析;最大利润售价为19元/千克,每日的最大利润为7500元,理由见解析【分析】(1)根据图形即可得出柑橘损坏的概率,再用整体1减去柑橘损坏的概率即可得出柑橘完好的概率,根据所得出柑橘完好的概率乘以这批柑橘的总质量即可(2)根据表格求出销售量y与售价x的函数关系式,代入x=16.5计算即可;12天内售完9000千克完好的柑橘,求出日最大销售量即可求出售价的范围,再根据利润=(售价-进价)销售量求出利润与售价的函数关系式即可;【详解】(1)由图可知损坏率在0.1上下波动,并趋于稳定故所求为千克(2)设销售量y与售价x的函数关系式为由题意可得函数图像过及两点得与的函数关系式为把代入,当售价定为16.5元/千克,日销售量为875千克依题意得:12天内售完9000千克柑橘故日销售量至少为:(千克)解得设利润为w元,则对称轴为当时w随x的增大而增大当时销售利润最大,最大利润为(元)【点睛】此题考查了利用频率估计概率,以及二次函数销售利润问题解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;并利用等量关系:利润=(售价-进价)销售量求出利润与售价的函数关系式