《2022年精品解析沪科版九年级数学下册第26章概率初步课时练习练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪科版九年级数学下册第26章概率初步课时练习练习题(含详解).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第26章概率初步课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是()A同时投掷两枚相同的硬币,出现“一正一反”的概率是B事件“两个正数相加,和是正数”是必然事件
2、C数2和8的比例中项是4D同一张底片洗出来的两张照片是位似图形2、下列说法错误的是( )A必然事件发生的概率是1B不可能事件发生的概率为0C随机事件发生的可能性越大,它的概率就越接近1D概率很小的事件不可能发生3、下列事件中,属于必然事件的是()A射击运动员射击一次,命中10环B打开电视,正在播广告C投掷一枚普通的骰子,掷得的点数小于10D在一个只装有红球的袋中摸出白球4、中国象棋文化历史久远在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是( )ABCD5、下列词语所描述的事件,属于必
3、然事件的是( )A守株待兔B水中捞月C水滴石穿D缘木求鱼6、以下事件为随机事件的是( )A通常加热到100时,水沸腾B篮球队员在罚球线上投篮一次,未投中C任意画一个三角形,其内角和是360D半径为2的圆的周长是7、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )ABCD8、下列说法正确的是( )A“买中奖率为的奖券10张,中奖”是必然事件B“汽车累积行驶,出现一次故障”是随机事件C襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D若两组数据的平均数相同,则方差大
4、的更稳定9、下列事件是必然事件的是()A抛一枚硬币正面朝上B若a为实数,则a20C某运动员射击一次击中靶心D明天一定是晴天10、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为( )A12B15C18D23第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小华为学校“赓续百年初心,庆祝建党百年”活动布置会场,在个不透明的口袋里有4根除颜色以外完全相同的缎带,其中2根为红色,2根为黄色,从口袋中随机摸出根缎带,则恰好摸出
5、1根红色缎带1根黄色缎带的概率是_2、四张背面相同的扑克牌,分别为红桃1,2,3,4,背面朝上,先从中抽取一张把抽到的点数记为a,再在剩余的扑克中抽取一张点数记为b,则以为坐标的点在直线上的概率为_3、某批青稞种子在相同条件下发芽试验结果如下表:每次试验粒数501003004006001000发芽频数4796284380571948估计这批青稞发芽的概率是_(结果保留到0.01)4、在一个不透明的袋子中装有红球、黄球共20个,这些球除颜色外都相同小明通过多次实验发现,摸出黄球的频率稳定在0.30左右,则袋子中黄球的数量可能是 _个5、在一个不透明的布袋中装有红球、白球共20个,这些球除颜色外都
6、相同小明从中随机摸出一个球记下颜色并放回,通过大量重复试验,发现摸到红球的频率稳定在0.65,则布袋中红球的个数大约是_三、解答题(5小题,每小题10分,共计50分)1、2021年6月17日,神舟十二号成功发射,标志着我国载人航天踏上新征程某学校举办航天知识讲座,需要两名引导员,决定从A,B,C,D四名志愿者中,通过抽签的方式确定两人抽签规则:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字(1)“A志愿者被选中”是_ 事件(填“随机”或“不可能”或“必然”);(2)用
7、画树状图或列表的方法求出A,B两名志愿者同时被选中的概率2、从两副完全相同的扑克中,抽出两张黑桃5和两张梅花8,现将这四张扑克牌洗匀后,背面向上放在桌子上,(1)问从中随机抽取一张扑克牌是梅花8的概率是多少?(2)利用树状图或列表法表示从中随机抽取两张扑克牌成为一对的概率3、长沙作为新晋的网红城市,旅游业快速发展,岳麓区共有A、B、C、D、E等网红景点,区旅游部门统计绘制出2021年“国庆”长假期间旅游情况统计图(不完整)如下所示,根据相关信息解答下列问题:(1)2021年“国庆”长假期间,岳麓区旅游景点共接待游客 万人并补全条形统计图;(2)在等可能性的情况下,甲、乙两个旅行团在A、B、C、
8、D四个景点中选择去同一景点的概率是多少?请用画树状图或列表加以说明4、在“双减”政策下,某学校自主开设了A书法、B篮球、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等若小明和小刚两位同学各计划选修一门课程,请用列表或树状图求他们两人恰好同时选修球类的概率5、新冠病毒在全球肆虐,疫情防控刻不容缓某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生开展新冠疫情防控知识测试(满分为10分)学校学生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计下面提供了部分信息抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,9,9,9,9,8,8,8,8,8,8,
9、8,7,7,6,5,5抽取的40名学生成绩分析表:年级七年级八年级平均分88.1众 数8b中位数a8方 差1.91.89请根据以上信息,解答下列问题:(1)直接写出上表中a,b的值;(2)该校七、八年级共有学生2000人,估计此次测试成绩不低于9分的学生有多少人?(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率-参考答案-一、单选题1、B【分析】根据概率的求法、随机事件、比例中项的概念、位似图形的概念判断即可【详解】解:A、同时投掷两枚相同的硬币,出现“一正一反”的概率是,本选
10、项说法错误,不符合题意;B、事件“两个正数相加,和是正数”是必然事件,本选项说法正确,符合题意;C、数2和8的比例中项是4,本选项说法错误,不符合题意;D、同一张底片洗出来的两张照片是全等图形,不一定是位似图形,本选项说法错误,不符合题意;故选:B【点睛】本题考查的是概率、随机事件、比例中项、位似图形,掌握它们的概念和性质是解题的关键2、D【分析】根据概率的意义分别判断后即可确定正确的选项【详解】解:A. 必然事件发生的概率是1,故该选项正确,不符合题意;B. 不可能事件发生的概率是0,故该选项正确,不符合题意;C. 随机事件发生的可能性越大,它的概率就越接近1,故该选项正确,不符合题意;D.
11、 概率很小的事件也可能发生,故该选项不正确,符合题意;故选D【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为03、C【分析】根据事件发生的可能性大小判断即可【详解】解:A、射击运动员射击一次,命中10环,是随机事件;B、打开电视,正在播广告,是随机事件;C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;D、在一个只装有红球的袋中摸出白球,是不可能事件;故选:C【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件不可能事件是指在一
12、定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件4、C【分析】用“-”(图中虚线)的上方的黑点个数除以所有黑点的个数即可求得答案【详解】解:观察“馬”移动一次能够到达的所有位置,即用“”标记的有8处,位于“-”(图中虚线)的上方的有2处,所以“馬”随机移动一次,到达的位置在“-”上方的概率是,故选:C【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=5、C【分析】根据必然事件就是一定发生的事件逐项判断即可【详解】A守株待兔是随机事件,故该选项不符合题意;B水
13、中捞月是不可能事件,故该选项不符合题意;C水滴石穿是必然事件,故该选项符合题意;D缘木求鱼是不可能事件,故该选项不符合题意故选:C【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键6、B【分析】根据事件发生的可能性大小判断相应事件的类型即可【详解】解:A通常加热到100时,水沸腾是必然事件;B篮球队员在罚球线上投篮一次,未投中是随机事件;C任意画一个三角形,其内角和是360是不可能事件;D半径为2的圆的周长是是必然事件;故选:B【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事
14、件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件7、D【分析】根据题意,判断出中心对称图形的个数,进而即可求得答案【详解】解:线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是故选D【点睛】本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键8、B【分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案【详解】解:A、“买中奖率为的奖
15、券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;故选:B【点睛】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键9、B【分析】根据必然事件的定义对选项逐个判断即可【详解】解:A、抛一枚硬币正面朝上,是随机事件,不符合题意;B、若a为实数,则a20,是必然事件,符合题意;C、某运动员射击一次击中靶心,是随机事件,不符合题意;D、明天一定是晴天,是随机事件,不符合题意
16、,故选:B【点睛】本题主要考查了必然事件的定义,熟练掌握必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件是解题的关键10、A【分析】由题意可设盒子中红球的个数x,则盒子中球的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可【详解】解:设盒子中红球的个数x,根据题意,得: 解得x=12,所以盒子中红球的个数是12,故选:A【点睛】本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其
17、中事件A出现m种结果,那么事件A的概率P(A)=;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A发生的频率会稳定于某个常数p,我们称事件A发生的概率为p二、填空题1、【分析】画树状图共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,再由概率公式即可求解【详解】解:根据题意画出树状图,得:共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,所以摸出1根红色缎带1根黄色缎带的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B
18、的概率是解题的关键2、【分析】首先画出树状图即可求得所有等可能的结果与点(a,b)在直线上的情况,然后利用概率公式求解即可求得答案【详解】解:画树状图得:由树形图可知:一共有12种等可能的结果,其中点(a,b)在直线上的有3种结果,所以点(a,b)在直线上的概率为,故答案为:【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比3、0.95【分析】利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可【详解】观察表格得到这批
19、青稞发芽的频率稳定在0.95附近,则这批青稞发芽的概率的估计值是0.95,故答案为:0.95【点睛】此题考查了利用频率估计概率,从表格中的数据确定出这种油菜籽发芽的频率是解本题的关键4、6【分析】由题意直接根据黄球出现的频率和球的总数,可以计算出黄球的个数【详解】解:由题意可得,200.30=6(个),即袋子中黄球的个数最有可能是6个.故答案为:6【点睛】本题考查利用频率估计概率,解答本题的关键是明确题意,计算出黄球的个数5、13【分析】总数量乘以摸到红球的频率的稳定值即可【详解】解:根据题意知,布袋中红球的个数大约是200.6513,故答案为:13【点睛】本题主要考查利用频率估计概率,大量重
20、复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率三、解答题1、 (1)随机;(2)见解析【分析】(1)根据随机事件、不可能事件及必然事件的概念求解即可;(2)画树状图,得出所有等可能结果数,再从中找到符合条件的结果数,继而利用概率公式求解即可【详解】(1)根据随机事件的概念,A志愿者被选中是随机事件上,故答案为:随机(2) 由上述树状图可知:所有可能出现的结果共有12种,并且每一个结果出现的可能性相同其中A,B两名志愿者同时被选中的有2种.P(A,B两名志愿者同时被选中)= 【点睛
21、】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比2、(1);(2)【分析】(1)根据概率公式计算即可;(2)根据列表法求概率即可【详解】(1)根据题意共有4张牌,两张梅花8,从中随机抽取一张扑克牌是梅花8的概率是;(2)列表如下,55885558585555858585858888585888共有12种等可能结果,其中凑成一对的有4种,随机抽取两张扑克牌成为一对的概率为【点睛】本题考查了概率公式求求概率和列表法求概率,掌握求概率的方法是解题的关键3、(1)5
22、0,见解析;(2),见解析【分析】(1)由A类景区有15万人,占比30%,从而可得游客的总人数,再由总人数乘以B类的占比得到B类的人数,再补全图形即可;(2)先画树状图得到选择的所有的等可能的结果数16种,同时得到选择同一景区的等可能的结果数有4种,再利用概率公式计算即可.【详解】解:(1)岳麓区旅游景点共接待游客1530%=50(万人),B景点的人数为5024%=12(万人),补全条形图如下:(2)画树状图如图所示:共有16种等可能出现的结果,其中甲、乙两个旅行团在A、B、C、D四个景点中选择去同一景点的结果有4种,甲、乙两个旅行团在A、B、C、D四个景点中选择去同一景点的概率=【点睛】本题
23、考查的是从条形图与扇形图中获取信息,补全条形图,利用列表法或画树状图求简单随机事件的概率,熟练的掌握统计与概率中的基础知识是解题的关键.4、【分析】画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修球类的结果数,然后根据概率公式求解【详解】解:画树状图为:共有16种等可能的结果数,其中他们两人恰好选修球类的结果数为4,所以他们两人恰好选修球类的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率5、(1)(2)(3)【分析】(1)根据众数和中位数的概念求解可得;(2)用总人
24、数乘以样本中七、八年级不低于9分的学生人数和所占比例即可得,(3)根据列表法求概率即可(1)根据抽取的20名七年级学生的成绩找到第10个和第11个成绩都是8,则中位数为8,即,根据条形统计图可知9分的有6人,人数最多,则众数为9,即(2)解:此次测试成绩不低于9分的七年级学生有8人,八年级学生有9人此次测试成绩不低于9分的学生有(人)(3)解:七年级得10分的有2人,八年级得10分的有3人设七年级的2人分别为,八年级的3人分别列表如下,根据列表可知,共有20种等可能结果,其中1名七年级学生和1名八年级学生的情形有12钟则所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率为【点睛】本题考查了求中位数,众数,根据样本估计总体,列表法求概率,掌握以上知识是解题的关键