《2022年最新强化训练北师大版八年级数学下册第六章平行四边形专题测评试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练北师大版八年级数学下册第六章平行四边形专题测评试题(无超纲).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则AEF的面积为()A2B3C4D52、
2、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中a的度数是( )A220B180C270D2403、如图,在平面直角坐标系xOy中,已知直线AB与y轴交于点A(0,6),与x轴的负半轴交于点B,且BAO30, M、N是该直线上的两个动点,且MN2,连接OM、ON,则MON周长的最小值为 ( )A23B22C22D54、如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,顶点B的坐标为(8,6).若直线l经过点(2,0),且直线l将平行四边形OABC分割成面积相等的两部分,则直线l对应的函数解析式是( )Ayx2By3x6CD5、如图,在ABC中,AC=BC=8,BCA=6
3、0,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D46、平行四边形中,则的度数是( )ABCD7、如图,的对角线交于点O,E是CD的中点,若,则的值为( )A2B4C8D168、如果一个多边形的每个内角都是144,那么这个多边形的边数是()A5B6C10D129、如图所示,ABCD,ADBC,则图中的全等三角形共有( )A1对B2对C3对D4对10、如图,将三角形纸片ABC沿DE折叠,当点A落在四边形BCED的外部时,测量得170,2132,则A为()A40B22C30D5
4、2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个正多边形的内角和为1080,那么从它的一个顶点出发可以引 _条对角线2、如图所示,在ABC中,BCAC,点D在BC上,DCAC10,且,作ACB的平分线CF交AD于点F,CF8,E是AB的中点,连接EF,则EF的长为_3、如图,平行四边形ABCD中,对角线AC、BD交于点O,M、N分别为AB、BC的中点,若OM1.5,ON1,则平行四边形ABCD的周长是_4、如图,点F在正五边形ABCDE的内部,ABF为等边三角形,则AFC等于_5、如图,中,D为AC中点,E为BC上一点,连接DE,且,若,则BC的长度为_三、解
5、答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ABAC,ADBC于点D(1)若DEAB交AC于点E,证明:ADE是等腰三角形;(2)若BC12,DE5,且E为AC中点,求AD的值2、证明:n边形的内角和为(n-2)180(n3)3、在等腰直角三角形ABC中,点E、F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90得到AG,连接GC,HB(1)如图1,求证:;(2)如图2,连接GF,HG,HG交AF于点Q点H在运动的过程中,求证:;若,当为等腰三角形时,EH的长为_4、(1)四边形ABCD中,A140,D80如图1,若BC,则C
6、_;如图2,若ABC的平分线BE交DC于点E,且,则_;如图3,若ABC和BCD的平分线相交于点E,则BEC_;(2)如图3,当,时,若ABC和BCD的平分线交于点E,BEC与,之间的数量关系为_;(3)如图4,在五边形ABCDE中,ABE300,CP,DP分别平分BCD和EDC,求P的度数5、已知:如图:五边形ABCDE的内角都相等,DFAB(1)则CDF (2)若EDCD,AEBC,求证:AFBF-参考答案-一、单选题1、B【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,由此求解即可【详解】解:如图所示,连接AC,四边形ABCD是平行四边形,ADBC,
7、AD=BC,AB=CD,ABCD,E、F分别是BC,CD的中点,故选B【点睛】本题主要考查了平行四边形的性质,与三角形中线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质2、D【分析】如图(见解析),先根据等边三角形的定义可得,再根据四边形的内角和即可得【详解】解:如图,是等边三角形,即,故选:D【点睛】本题考查了多边形的内角和、等边三角形,熟练掌握多边形的内角和是解题关键3、B【详解】解:如图作点O关于直线AB的对称点O,作且,连接OC交AB于点D,连接ON,MO, 四边形MNOC为平行四边形,在OMC中,即,当点M到点D的位置时,即当O、M、C三点共线,取得最小值,设,则,解得:
8、,即:,解得:,在中,即:,故选:B【点睛】题目主要考查轴对称及平行线、平行四边形的性质,勾股定理解三角形,角的直角三角形性质,理解题意,作出相应图形是解题关键4、C【分析】根据直线l将平行四边形OABC分割成面积相等的两部分,可得直线l过OB的中点,又根据中点公式可得OB的中点为,然后设直线l的解析式为,将点(2,0), 代入,即可求解【详解】解:直线l将平行四边形OABC分割成面积相等的两部分,直线l过平行四边形的对称中心,即过OB的中点,顶点B的坐标为(8,6), ,即,设直线l的解析式为,将点(2,0), 代入,得:,解得:,直线l的解析式为,故选:C【点睛】本题主要考查了求一次函数解
9、析式,平行四边形的性质,明确题意,得到直线l过平行四边形的对称中心是解题的关键5、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE
10、当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键6、B【分析】根据平行四边形对角相等,即可求出的度数【详解】解:如图所示,四边形是平行四边形,故:B【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质7、B【分析】根据平行四边形的性质可得,SBOC=SAOD=SCOD=SAOB=8,再根据三角形的中线平分三角形的面积可得根据三角形的中线平
11、分三角形的面积可得SDOE=4,进而可得答案【详解】解:四边形ABCD是平行四边形,SBOC=SAOD=SCOD=SAOB=8,点E是CD的中点,SDOE=SCOD=4,故选:B【点睛】此题主要考查了平行四边形的性质,以及三角形中线的性质,掌握平行四边形的性质,三角形的中线平分三角形的面积是解答本题的关键8、C【分析】根据多边形的内角求出多边形的一个外角,然后根据多边形外角和等于,计算即可【详解】解:一个多边形的每个内角都是144,这个多边形的每个外角都是(180144)36,这个多边形的边数3603610故选:C【点睛】本题考查了多边形的外角和,熟知多边形外角和等于是解本题的关键9、D【分析
12、】根据平行四边形的判定与性质,求解即可【详解】解:ABCD,ADBC四边形为平行四边形,、又,、图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质10、B【分析】利用四边形的内角和定理求出,再利用三角形的内角和定理可得结果【详解】,故选:B【点睛】本题主要考查了多边形的内角和定理及三角形的内角和定理,关键是运用多边形的内角和定理求出的度数二、填空题1、【分析】设这个正多边形有条边,再建立方程 解方程求解结合从边形的一个顶点出发可以引条对角线,从而可得答案.【详解】解:设这个正多边形有条边,则 解得: 所以从一
13、个正八边形的一个顶点出发可以引条对角线,故答案为:【点睛】本题考查的是正多边形的内角和定理的应用,正多边形的对角线问题,掌握“多边形的内角和公式为 从边形的一个顶点出发可以引条对角线”是解本题的关键.2、4【分析】根据等腰三角形的性质得到F为AD的中点,CFAD,根据勾股定理得到DF=6,根据三角形的中位线定理即可得到结论【详解】解:DC=AC=10,ACB的平分线CF交AD于F,F为AD的中点,CFAD,CFD=90,DC=10,CF=8,DF=6,AD=2DF=12,BD=8,点E是AB的中点,EF为ABD的中位线,EF=BD=4,故答案为:4【点睛】本题考查了三角形的中位线定理,等腰三角
14、形的性质,勾股定理,证得EF是ABD的中位线是解题的关键3、10【分析】根据平行四边形的性质可得BODO,ADBC,ABCD,再由条件M、N分别为AB、BC的中点可得MO是ABD的中位线,NO是BCD的中位线,再根据三角形中位线定理可得AD、DC的长【详解】解:四边形ABCD是平行四边形,BODO,ADBC,ABCD,M、N分别为AB、BC的中点,MOAD,NOCD,OM1.5,ON1,AD3,CD2,平行四边形ABCD的周长是:332210,故答案为:10【点睛】此题主要考查了平行四边形的性质,以及中位线定理,关键是掌握平行四边形对边相等,对角线互相平分4、126【分析】根据等边三角形的性质
15、得到AFBF,AFBABF60,由正五边形的性质得到ABBC,ABC108,等量代换得到BFBC,FBC48,根据三角形的内角和求出BFC66,根据AFCAFBBFC即可得到结论【详解】解:ABF是等边三角形,AFBF,AFBABF60,在正五边形ABCDE中,ABBC,ABC108,BFBC,FBCABCABF48,BFC66,AFCAFBBFC126,故答案为:126【点睛】本题考查了正多边形的内角和,等边三角形的性质,等腰三角形的性质,熟记正多边形的内角的求法是解题的关键5、17【分析】取BC的中点F,连接DF,由三角形中位线定理可得,DFAB, 再由可得DFE是等腰三角形,且EF=DF
16、,则CF可求出来,从而可求得BC的长度【详解】如图,取BC的中点F,连接DF则BC=2CFD点是AC的中点DF是ABC的中位线,DFABCFD=ABC CFD=2DECCFD=DEC+FDEDEC=FDE 故答案为:17 【点睛】本题考查了等腰三角形的判定,三角形中位线定理,取BC的中点F得到等腰DEF是关键三、解答题1、(1)见解析;(2)8【分析】(1)根据“三线合一”性质先推出BAD=CAD,再结合平行线的性质推出BAD=ADE,从而得到ADE=EAD,即可根据“等角对等边”证明;(2)根据题意结合中位线定理可先推出AC=2DE,然后在RtADC中利用勾股定理求解即可【详解】(1)证:在
17、ABC中,ABAC,ABC为等腰三角形,ADBC于点D,由“三线合一”知:BAD=CAD,DEAB交AC于点E,BAD=ADE,CAD=ADE,即:ADE=EAD,AE=DE,ADE是等腰三角形;(2)解:由“三线合一”知:BD=CD,BC=12,DC=6,E为AC中点,DE为ABC的中位线,AB=2DE,AC=AB=2DE=10,在RtADC中,AD=8【点睛】本题考查等腰三角形的性质与判定,勾股定理解三角形,以及三角形的中位线定理等,掌握等腰三角形的基本性质,熟练运用中位线定理和勾股定理计算是解题关键2、见解析【分析】在n边形内任取一点O,连接O与各顶点的线段把n边形分成了n个三角形,然后
18、利用n个三角形的面积减去以O为公共顶点的n个角的和,即可求证【详解】已知: n边形A1A2An,求证: ,证明:如图,在n边形内任取一点O,连接O与各顶点的线段把n边形分成了n个三角形,n个三角形内角和为n180,以O为公共顶点的n个角的和360(即一个周角),n边形内角和为 【点睛】本题主要考查了多边形的内角和,做适当辅助线,得到n边形的内角和等于n个三角形的面积减去以O为公共顶点的n个角的和是解题的关键3、(1)见解析;(2)见解析,或2【分析】(1)由旋转的性质可得,再由ABC是的等腰直角三角形,可得,由此即可证明;(2)证明AEHAFG(SAS),可得AFG=AEH=45,从而根据两角
19、的和可得结论;分两种情况:i)如图3,AQ=QG时,ii)如图4,当AG=QG时,分别根据等腰三角形的性质可得结论【详解】(1)证明:由旋转得:, ABC是的等腰直角三角形, ;(2)证明:在等腰直角三角形ABC中, 点E,F分别为AB,AC的中点,EF是的中位线, ,; 分两种情况:i)如图3,AQ=QG时,AQ=QG,QAG=AGQ,AGAH且AG=AH,AHG=AGH=45,AHG=AGH=HAQ=QAG=45,EAH=FAH=45,AE=AF,AH=AH,AEHAFH(SAS),AHE=AHF,AHE+AHF=180,AHE=AHF=90,EAH=AEH=45,AH=EH,由得,即,;
20、ii)如图4,当AG=QG时,GAQ=AQG,AEH=AGQ=45,GAQ=AQG=67.5,EAQ=HAG=90,EAH=GAQ=67.5,AHE=EAH=67.5,EH=AE=2H为线段EF上一动点(不与点E,F重合),不存在AG=AQ的情况综上,当AQG为等腰三角形时,HE=2或,故答案为:或2【点睛】本题是三角形的综合题,考查了旋转的性质,等腰直角三角形的性质和判定,等腰三角形的性质和判定,也考查了全等三角形的判定与性质,三角形中位线定理,第二问要注意分类讨论,不要丢解4、(1)70;60;110;(2);(3)60【分析】(1)根据四边形内角和为360度进行求解即可;先根据平行线的性
21、质求出ABE=180-A=40,再由角平分线的定义求出ABC=2ABE=80,再由四边形内角和为360度进行求解即可;先根据四边形内角和为360度求出ABC+ACB =140,再由角平分线的定义得到,最后利用三角形内角和定理求解即可;(2)同(1)的方法求解即可;(3)同(1)的方法,先求出,然后根据角平分线的定义以及三角形内角和定理求解即可【详解】(1)A=140,D=80,B=C,故答案为:70;BEAD,A=140,ABE=180-A=40,BE平分ABC,ABC=2ABE=80,C=360-A-D-ABC=60,故答案为:60;A140,D80,ABC+ACB=360-A-D=140,
22、ABC和BCD的平分线相交于点E,故答案为:110;(2),ABC和BCD的平分线相交于点E,故答案为:;(3),又CP,DP分别平分BCD和EDC,.,【点睛】本题主要考查了四边形内角和,三角形内角和定理,多边形内角和公式,角平分线的定义,解题的关键在于能够熟练掌握多边形内角和公式5、(1)54;(2)见解析【分析】(1)根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC内角和计算出CDF的度数;(2)连接AD、DB,然后证明DEADCB可得ADDB,再根据等腰三角形的性质可得AFBF【详解】解:(1)五边形ABCDE的内角都相等,CBEDC180(52)3108,DFAB,DFB90,CDF3609010810854,故答案为:54(2)连接AD、DB,在AED和BCD中,DEADCB(SAS),ADDB,DFAB,AFBF【点睛】本题主要考查了多边形内角和公式,全等三角形的性质与判定,等腰三角形的性质与判定,熟练掌握多边形内角和公式是解题的关键