《2022年精品解析北师大版九年级数学下册第二章二次函数章节测试试题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版九年级数学下册第二章二次函数章节测试试题(含详解).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第二章二次函数章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、抛物线的对称轴为直线( )ABCD2、已知点P1(x1,y1),P2(x2,y2)为抛物线yax2+4ax+c(
2、a0)上两点,且x1x2,则下列说法正确的是()A若x1+x24,则y1y2B若x1+x24,则y1y2C若a(x1+x24)0,则y1y2D若a(x1+x24)0,则y1y23、若点在二次函数的图象上,则下列各点中,一定在二次函数图象上的是( )ABCD4、已知二次函数的图象如图所示,在下列五个结论中:;其中正确的个数有( )A1个B2个C3个D4个5、如图,抛物线经过点,对称轴l如图所示,则下列结论:;,其中所有正确的结论是( )ABCD6、小轩从如图所示的二次函数yax2bxc(a0)的图象中,观察得出了下面五条信息:abc0;abc0;4acb20;ab;b2c0你认为其中正确信息的个
3、数有( )A2B3C4D57、在平面直角坐标系中,已知点的坐标分别为,若抛物线与线段只有一个公共点,则的取值范围是( )A或B或C或D8、下列各式中,是的二次函数的是( )ABCD9、如图,抛物线yax2+bx+c(a0)与x轴交于点A(1,0),与y轴的交点B在点(0,2)与点(0,3)之间(不包括这两点),对称轴为直线x2有以下结论:abc0;5a+3b+c0;a;若点M(9a,y1),N(a,y2)在抛物线上,则y1y2其中正确结论的个数是( )A1B2C3D410、对于题目“抛物线:与直线:只有一个交点,则整数的值有几个”;你认为的值有( )A3个B5个C6个D7个第卷(非选择题 70
4、分)二、填空题(5小题,每小题4分,共计20分)1、抛物线yax24ax+3a2(a0)恒过定点,则定点的坐标为 _2、已知P(,),Q(,)两点都在抛物线上,那么_3、将抛物线y2(x2)25向左平移3个单位长度后,再沿x轴翻折,则变换后所得抛物线的顶点坐标为_4、将二次函数的图像向上平移一个单位,再向右平移两个单位后,所得图像的函数解析式为_5、二次函数的图象与x轴有两个交点,则k的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,抛物线的顶点为A,(1)若,点A到轴的距离为_;求此抛物线与轴的两个交点之间的距离;(2)已知点A到轴的距离为4,此抛物线与直线
5、的两个交点分别为,其中,若点在此抛物线上,当时,总满足,求的值和的取值范围2、抛物线yax2bx2(a0)与x轴交于点A(1,0),B(3,0),与y轴交于点C(1)求抛物线的解析式;(2)如图1,抛物线的对称轴与x轴相交于点H,连接AC,BCABC绕点B顺时针旋转一定角度后落在第一象限,当点C的对应点C1落在抛物线的对称轴上时,求此时点A的对应点A1的坐标;(3)如图2,过点C作轴交抛物线于点E,已知点D在抛物线上且横坐标为,在y轴左侧的抛物线上有一点P,满足PDCEDC,求点P的坐标3、如图,在平面直角坐标系xOy中,一次函数y2x+m与二次函数yax2+bx+c的图象相交于A,B两点,点
6、A(1,4)为二次函数图象的顶点,点B在x轴上(1)求二次函数的解析式;(2)根据图象,求二次函数的函数值大于0时,自变量x的取值范围4、为了改善小区环境,某小区决定在一块一边靠墙(墙长25m)的空地上修建一个矩形小花园ABCD,小花园一边靠墙,另三边用总长40m的栅栏围住,如下图所示若设矩形小花园AB边的长为m,面积为ym2(1)求与之间的函数关系式;(2)当为何值时,小花园的面积最大?最大面积是多少?5、某企业投资100万元引进一条农产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万元,但使用8年后生产线报废该,生产线投产后,从第1年到第x年的维修、保养费用累计为y万元,且y
7、ax2+bx,若第1年的维修、保养费为2万元,第2年的为4万元(1)求a的值;(2)小敏同学依题意判断,这条生产线在第四年能收回投资款,并在报废前能盈利100万元你认为这个判断正确吗?请说明理由-参考答案-一、单选题1、A【分析】先把抛物线化为顶点式的形式,再进行解答即可【详解】解:抛物线y=x2+4x-8可化为y=(x+2)2-12,抛物线的对称轴是直线x=-2故选:A【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键二次函数的顶点式为,则抛物线的对称轴为直线,顶点坐标为(,) 2、C【分析】先求出抛物线的对称轴为,然后结合二次函数的开口方向,判断二次函数的增减性,即可
8、得到答案【详解】解:抛物线yax2+4ax+c,抛物线的对称轴为:,当点P1(x1,y1),P2(x2,y2)恰好关于对称时,有,即,x1x2,;抛物线的开口方向没有确定,则需要对a进行讨论,故排除A、B;当时,抛物线yax2+4ax+c的开口向下,此时距离越远,y值越小;a(x1+x24)0,点P2(x2,y2)距离直线较远,;当时,抛物线yax2+4ax+c的开口向上,此时距离越远,y值越大;a(x1+x24)0,点P1(x1,y1)距离直线较远,;故C符合题意;D不符合题意;故选:C【点睛】本题考查了二次函数的性质,二次函数的对称性,解题的关键是熟练掌握二次函数的性质进行分析3、A【分析
9、】先把点A代入解析式得出,函数化为,然后把各点中的x的值代入解析式求函数值,看函数值是否等于各点的纵坐标即可【详解】解:点在二次函数的图象上,当x=-4时,故选项A在二次函数图象上;当x=-2时,故选项B不在二次函数图象上;当x=0时,故选项C不在二次函数图像上;当x=2时,故选项D不在二次函数图象上故选A【点睛】本题考查二次函数图象上点的特征,求函数值,掌握二次函数图象上点的特征是解题关键4、C【分析】由抛物线开口向上得a0,由抛物线的对称轴为直线x=-0得b0,判断;由抛物线与y轴的交点在x轴上方得c0判断,利用图象将x=1,-1,2代入函数解析式判断y的值,进而对所得结论进行判断【详解】
10、解:抛物线开口向上,a0,抛物线的对称轴x=-0,b0,-1,2a-b,2a-b-2b,b0,-2b0,即2a-b0,故错误;抛物线与y轴的交点在x轴下方,c0,故正确;当x=2时,y=4a+2b+c0,故正确,故错误的有3个故选:C【点睛】本题考查了二次函数图象与系数的关系,熟练利用数形结合得出是解题关键5、D【分析】根据图像可知二次函数对称轴,可得;有;当时,;当时,;当时,;进而得出结果【详解】解:由图像可知,;故错误当时,;故正确当时,;故正确当时,;故正确故选D【点睛】本题考察了二次函数解题的关键在于求出系数的取值范围,以及一些特殊取值时函数值的大小6、B【分析】利用函数图象分别求出
11、a,b,c的符号,进而得出x1或1时y的符号,进而判断得出答案【详解】解:图象开口向下,a0,对称轴x,3b2a,则ab,b0,图象与x轴交于y轴正半轴,c0,abc0,故选项错误;选项正确;由图象可得出:当x1时,y0,abc0,故选项正确;抛物线与x轴有两个交点,则b24ac0,则4acb20,故选项错误;当x1时,yabc0,bbc0,b2c0,故选项正确;故正确的有3个故选:B【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用7、A【分析】将函数解析式化为顶点式形式,得到图形的顶点坐标,图象与相似,确
12、定当m变化时,抛物线顶点在直线y=-x+2上移动,根据m的变化依次分析抛物线与MN的交点个数,由此得到答案【详解】解:,图象的顶点坐标为:(m,-m+2),此函数图象二次项系数为1,与相似,当m变化时,抛物线顶点在直线y=-x+2上移动,m从负增大时,无交点,当m=-1时,点M在抛物线右边,抛物线与MN有1个交点,当m=0,顶点为(0,2)时,抛物线与MN相交,有2个交点,m继续增大,抛物线与MN有2个交点,直到N经过抛物线右边,当m继续增大,保持1个交点,当N经过抛物线左边时,有1个交点,此后无交点,将N(3,3)代入解析式:,解得,的取值范围是或,故选:A【点睛】此题考查了抛物线的解析式化
13、为顶点式,二次函数的性质,抛物线移动的规律,根据抛物线的移动确定与MN的交点个数是解题的关键8、C【分析】根据二次函数的定义依次判断【详解】解:A、不是二次函数,不符合题意;B、,不是二次函数,不符合题意;C、,是二次函数,符合题意;D、,不是二次函数,不符合题意;故选:C【点睛】此题考查二次函数的定义:形如的函数是二次函数,解题的关键是正确掌握二次函数的构成特点9、C【分析】根据二次函数的图象与系数的关系即可求出答【详解】解:由开口可知:a0,对称轴 b0,由抛物线与y轴的交点可知:c0,abc0,故正确;对称轴x=, b=-4a,5a+3b+c=5a- 12a+c=-7a+c,a0,c0,
14、-7a+c0,5a+3b+c 0,故正确;x=-1,y=0,a-b+c=0, b=-4a,c=-5a,2c3,2-5a3,a,故正确;点M(-9a,y1),N(,y2) 在抛物线上,则 当时,y1y2当-时,y1y2故错误故选: C【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型10、D【分析】根据二次函数的图象和性质解答即可【详解】解:由抛物线:可知:抛物线开口向上,对称轴为直线x=1,顶点坐标为(1,4),如图,当x=1时,y=0,当x=4时,y=5,抛物线与直线y=m只有一个交点,0m5或m=4,整数m=0或1或2或3或4或5或4,即整数m的值
15、有7个,故选:D【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解答的关键二、填空题1、(【分析】由y=ax2-4ax+3a-2 =a(x2-4x+3)-2知,当x2-4x+3=0时,二次函数的图象恒过定点,即可求解【详解】解:y=ax2-4ax+3a-2 =a(x2-4x+3)-2,当x2-4x+3=0时,二次函数的图象恒过定点,则x=3或x=1,当x=1时,y=-2,当x=3时,y=-2,故定点的坐标为(1,-2)或(3,-2)故答案为:(1,-2)或(3,-2)【点睛】本题主要考查函数图象上点的坐标特征,由y=ax2-4ax+3a-2得到y= a(x2-4x+3)-2
16、是本题解题的关键2、4【分析】根据P(,),Q(,)的纵坐标相等,得出关于抛物线对称轴对称,即可求解【详解】解:P(,),Q(,)两点都在抛物线上,根据纵坐标相等得,P(,),Q(,)关于抛物线的对称轴对称,故答案是:4【点睛】本题考查了二次函数的图象的性质,解题的关键是掌握二次函数的对称性求解3、(-5,5)【分析】利用顶点式解析式写出平移后抛物线的解析式,最后写出关于x轴对称的抛物线的解析式即可得出答案【详解】解:抛物线y2(x2)25向左平移3个单位的顶点坐标为(5,5),得到新的图象的解析式y2(x5)25,将图象沿着x轴翻折,则翻折后的图象对应的函数解析式为y2(x5)25变换后顶点
17、的坐标为(5,5)故答案为:(5,5)【点睛】本题考查了二次函数图象与几何变换,抛物线平移问题,实际上就是两条抛物线顶点之间的问题,找到了顶点的变化就知道了抛物线的变化4、【分析】根据“左加右减,上加下减”的法则即可得出结论【详解】解:二次函数的图象向上平移一个单位,再向右平移两个单位后,所得二次函数的解析式为故答案为:【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键5、【分析】根据抛物线与x轴有两个交点,可得,列出不等式求解即可【详解】解:二次函数的图象与x轴有两个交点,所以,解得,故答案为:【点睛】本题考查了二次函数与一元二次方程的关系,解题关
18、键是明确抛物线与x轴有两个交点,可得三、解答题1、(1)8; ;(2) ,【分析】(1)当时,可得抛物线的顶点坐标为 ,即可求解;令,可得此抛物线与轴的两个交点为 ,即可求解;(2)根据点A到轴的距离为4,可得 ,从而得到抛物线为 ,再由此抛物线与直线的两个交点分别为,其中,可得方程,从而得到 ,进而得到 ,然后把 ,联立可得 ,再由点在此抛物线上,当时,总满足,可得抛物线对称轴 在点的左侧,即可求解【详解】解:(1)当时,抛物线的顶点坐标为 ,点A到轴的距离为8;令,即 ,解得: ,此抛物线与轴的两个交点为 ,此抛物线与轴的两个交点之间的距离为 ;(2)点A到轴的距离为4, ,解得: ,抛物
19、线为 ,此抛物线与直线的两个交点分别为,其中,即 , ,解得: ,把 ,联立得: ,解得: ,点在此抛物线上,当时,总满足,抛物线对称轴 在点的左侧, , ,即 , 取任意实数,的取值范围为 【点睛】本题主要考查了二次函数的图象和性质,与一函数的交点问题,熟练掌握二次函数的图象和性质,并利用数形结合思想解答是解题的关键2、(1);(2)(3,4);(3)(,)【分析】(1)把A(1,0),B(3,0)代入抛物线解析式利用待定系数法求解二次函数的解析式即可;(2)如图,先求解C(0,2),对称轴为直线,可得BHCO2结合旋转得BC1BC ,证明RTBC1HRTCBO(HL),再证明旋转角A1BA
20、C1BC90,从而可得答案;(3)先求解D(,),E(2,2),如图,过点D作DGCE交CE的延长线于点G,证明CGDG,可得ECDGDC45 ,如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P,证明QCDECD,可得QCEC2,可得Q(0,0),再求解直线DQ的解析式为,联立 ,再解方程组可得答案.【详解】解:(1)将A(1,0),B(3,0)代入抛物线解析式得 解得 抛物线的解析式为(2)抛物线的解析式为,A(1,0),B(3,0)C(0,2),对称轴为直线 BHCO2由旋转得BC1BC 则RTBC1HRTCBO(HL) C1BHBCOC1BCC1BHOBCBCOOBC90旋转
21、角A1BAC1BC90,即A1Bx轴 A1BBA4,B(3,0)A1(3,4)(3)抛物线的解析式为,D的横坐标为当x时,y,则D(,)轴,C(0,2),对称轴为直线x1E(2,2) 如图,过点D作DGCE交CE的延长线于点G, CGDG,ECDGDC45 如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P轴 ,QCE90QCDECD45CDCD,QCDECD(ASA)QCEC2,C(0,2),Q(0,0)D(,),设直线 解得: 直线DQ的解析式为则 ,消去得: 解得: 当时, 当时, 所以方程组的解为:或,【点睛】本题考查的是全等三角形的判定与性质,利用待定系数法求解二次函数的解
22、析式,旋转的性质,求解一次函数与二次函数的交点坐标,作出适当的辅助线构建全等三角形,再利用全等三角形的性质证明相等的线段,再得到点的坐标是解本题的关键.3、(1);(2)【分析】(1)把点A代入一次函数解析式,求出一次函数解析式和点B的坐标,然后设出二次函数顶点式,把点B代入即可求出二次函数解析式;(2)由图像可知,x轴上面部分的二次函数值都大于0,根据二次函数与x轴的交点特征求得二次函数与x轴的交点即可得出答案【详解】解:(1)点A(1,4)在一次函数y2x+m上,把点A(1,4)代入y2x+m,得,421+m,解得:m6,一次函数解析式为:y2x+6,令y0时,则2x+60,解得:x3,点
23、B的坐标为:(3,0),点A(1,4)为二次函数图象的顶点,点B在x轴上,设二次函数解析式为:,把点B(3,0)代入,解得:a1,二次函数的解析式为:;(2)由(1)求得二次函数解析式为,令y0,即,解得:,由图像可知x轴上面部分的二次函数值都大于0,且二次函数与x轴交于点(1,0)和(3,0),自变量x的取值范围:【点睛】本题考查了一次函数的图像和性质,二次函数的图像和性质,根据顶点坐标设出二次函数顶点式是求出二次函数的关键4、(1)(1).();(2)当x为时,小花园的面积最大,最大面积是【分析】(1)首先根据矩形的性质,由花园的AB边长为x m,可得BC=(40-2x)m,然后根据矩形面
24、积即可求得y与x之间的函数关系式,又由墙长25m,即可求得自变量的x的范围;(2)用配方法求最大值解答问题【详解】解:(1)四边形ABCD是矩形,AB=CD,AD=BC,AB=x m,BC=(40-2x)m,花园的面积为:y=ABBC=x(40-2x)=-2x2+40x,40-2x25,x+x40,x7.5,x20,7.5x20,y与x之间的函数关系式为:y=-2x2+40x(7.5x20);(2) ,() 当时,答:当x为10m时,小花园的面积最大,最大面积是200m2【点睛】本题考查了二次函数的应用、一元二次方程的应用,解题的关键是明确题意,列出函数解析式5、(1);(2)在第四年能收回投资款,但不能在报废前盈利100万元,理由见解析【分析】(1)根据题意,将代入解析式即可求得的值;(2)根据题意列出一元二次方程,解方程,且根据为正整数求解,设盈利万元,根据二次函数的性质求得最值,进而即可解决问题【详解】解:(1)根据题意,将代入解析式得:解得(2)判断不正确由题意解得是正整数或使用8年后生产线报废,即这条生产线在第四年能收回投资款,设盈利万元,则又该函数的对称轴为,在对称轴左侧,随的增大而增大当时,取得最大值,最大值(万元)故不能在报废前盈利100万元【点睛】本题考查了二次函数的应用,理解题意列出函数关系式是解题的关键