2022年精品解析北师大版八年级数学下册第六章平行四边形同步练习试题(含答案及详细解析).docx

上传人:知****量 文档编号:28161505 上传时间:2022-07-26 格式:DOCX 页数:30 大小:998.66KB
返回 下载 相关 举报
2022年精品解析北师大版八年级数学下册第六章平行四边形同步练习试题(含答案及详细解析).docx_第1页
第1页 / 共30页
2022年精品解析北师大版八年级数学下册第六章平行四边形同步练习试题(含答案及详细解析).docx_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《2022年精品解析北师大版八年级数学下册第六章平行四边形同步练习试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版八年级数学下册第六章平行四边形同步练习试题(含答案及详细解析).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第六章平行四边形同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点O是ABCD的对称中心,l是过点O的任意一条直线,它将平行四边形分成甲、乙两部分,在这个图形上做扎针试

2、验,则针头扎在甲、乙两个区域的可能性的大小是( )A甲大B乙大C一样大D无法确定2、已知正边形的每一个内角都是144,则的值是()A12B10C8D63、将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条直线上,则COF的度数是()A74B76C84D864、如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F, ,则 ABCD的面积为( ) A24B32C40D485、n 边形的每个外角都为 15,则边数 n 为( )A20B22C24D266、如图,正五边形ABCDE点D、E分别在直线m、n上若m

3、n,120,则2为( )A52B60C58D567、如图,在ABCD中,AD=2AB,F是AD的中点,作CEAB于E,在线段AB上,连接EF、CF则下列结论:BCD=2DCF;ECF=CEF;SBEC=2SCEF;DFE=3AEF,其中一定正确的是( )ABCD8、四边形中,如果,则的度数是( )A110B100C90D309、如图,一只蚂蚁从点A出发沿直线前进5m,到达点B后,向左转角度,再沿直线前进5m,到达点C后,又向左转角度,照这样爬下去,第一次回到出发点,蚂蚁共爬了60m,则每次向左转的度数为( )A30B36C40D6010、若一个多边形的每一个内角均为120,则下列说法错误的是(

4、 )A这个多边形的内角和为720B这个多边形的边数为6C这个多边形是正多边形D这个多边形的外角和为360第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个多边形的内角和是外角和的倍,则它的边数是_2、如图,ABC中,D、E分别是AB、AC的中点,若DE4cm,则BC_cm3、如图,在 中, 于点 , 于点 若 , ,且 的周长为40,则 的面积为_4、如图,在中,、分别是、的中点,连结若,则_5、正多边形的一个内角等于144,则这个多边形的边数是 _ 三、解答题(5小题,每小题10分,共计50分)1、ABC和ADE均为等腰直角三角形,BACDAE90,将ADE绕点A

5、逆时针旋转一周,连接DB,将线段DB绕点D逆时针旋转90得DF,连接EF(1)如图1,当D在AC边上时,线段CD与EF的关系是 , (2)如图2,当D在ABC的内部时,(1)的结论是否成立?说明理由;(3)当AB3,AD,DAC 45时,直接写出DEF的面积2、如图在平面直角坐标系中,点A(-2,0),B(2,3),C(0,4)(1)判断ABC的形状,并说明理由;(2)点D为平面直角坐标系中的点,以A、B、C、D为顶点的四边形为平行四边形,写出所有满足条件的点D的坐标3、ABC和GEF都是等边三角形问题背景:如图1,点E与点C重合且B、C、G三点共线此时BFC可以看作是AGC经过平移、轴对称或

6、旋转得到请直接写出得到BFC的过程迁移应用:如图2,点E为AC边上一点(不与点A,C重合),点F为ABC中线CD上一点,延长GF交BC于点H,求证:联系拓展:如图3,AB12,点D,E分别为AB、AC的中点,M为线段BD上靠近点B的三等分点,点F在射线DC上运动(E、F、G三点按顺时针排列)当最小时,则MDG的面积为_4、如图,在ABC中,ABAC,ADBC于点D(1)若DEAB交AC于点E,证明:ADE是等腰三角形;(2)若BC12,DE5,且E为AC中点,求AD的值5、如图,已知,以为直径的半交于,交于,求的度数-参考答案-一、单选题1、C【分析】如图,连接 记过的直线交于 则为的中点,再

7、证明 可得 从而可得答案.【详解】解:如图,连接 记过的直线交于 为ABCD的对称中心,为的中点, 同理: 所以针头扎在甲、乙两个区域的可能性的大小是一样的,故选C【点睛】本题考查的是全等三角形的判定与性质,平行四边形的性质,随机事件发生的可能性的大小,几何概率的意义,理解几何概率的意义是解本题的关键.2、B【分析】根据多边形的内角和公式和已知得出144n(n2)180,解方程即可【详解】解:根据题意得:144n(n2)180,解得:n10,故选:B【点睛】本题考查了多边形的内角和定理,能根据题意得出方程144n(n2)180是解此题的关键3、C【分析】利用正多边形的性质求出EOF,BOC,B

8、OE即可解决问题【详解】解:由题意得:EOF108,BOC120,OEB72,OBE60,BOE180726048,COF3601084812084,故选:【点睛】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识4、B【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得【详解】解:四边形是平行四边形,在和中,则的面积为,故选:B【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键5、C【分析】根据多边形的外角和等于360度得到15n360

9、,然后解方程即可【详解】解:n边形的每个外角都为15,15n360,n24故选C【点睛】本题考查了多边形外角和,熟练掌握多边形外角和为360度是解题的关键6、D【分析】延长AB交直线n于点F,由正五边形ABCDE,可得出五边形每个内角的度数,再由三角形外角的性质可得,根据平行线的性质可得,最后再利用一次三角形外角的性质即可得【详解】解:如图所示,延长AB交直线n于点F,正五边形ABCDE,故选:D【点睛】题目主要考查正多边形的内角,平行线的性质,三角形外角的性质等,理解题意,作出辅助线,综合运用这几个性质是解题关键7、B【分析】根据易得DF=CD,由平行四边形的性质ADBC即可对作出判断;延长

10、EF,交CD延长线于M,可证明AEFDMF,可得EF=FM,由直角三角形斜边上中线的性质即可对作出判断;由AEFDMF可得这两个三角形的面积相等,再由MCBE易得SBEC2SEFC ,从而是错误的;设FEC=x,由已知及三角形内角和可分别计算出DFE及AEF,从而可判断正确与否【详解】F是AD的中点,AF=FD,在ABCD中,AD=2AB,AF=FD=CD,DFC=DCF,ADBC,DFC=FCB,DCF=BCF,BCD=2DCF,故正确;延长EF,交CD延长线于M,四边形ABCD是平行四边形,ABCD,A=MDF,F为AD中点,AF=FD,在AEF和DFM中, ,AEFDMF(ASA),FE

11、=MF,AEF=M,CEAB,AEC=90,AEC=ECD=90, FM=EF,FC=FE,ECF=CEF,故正确;EF=FM,SEFC=SCFM , MCBE,SBEC2SEFC , 故SBEC=2SCEF , 故错误; 设FEC=x,则FCE=x,DCF=DFC=90x,EFC=1802x,EFD=90x+1802x=2703x,AEF=90x,DFE=3AEF,故正确,故选:B 【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点8、C【分析】根据四边形内角和是360进行求解即可【详解】解:

12、四边形的内角和是360,故选:C【点睛】本题考查四边形的内角和,是基础考点,难度较易,掌握相关知识是解题关键9、A【分析】蚂蚁第一次回到出发点,爬行路线是一个多边形,是这个多边形的外角,根据正多边形的外角和定理即可得出答案【详解】解:蚂蚁爬行路线是一个多边形,边数是,由于每个外角都相等,所以 ,故选:A【点睛】本题主要考查正多边形外角和定理,解题关键是要牢记多边形的外角和为36010、C【分析】先根据多边形的外角和求出这个多边形的边数,再根据多边形的内角和、正多边形的定义即可得【详解】解:多边形的每一个内角均为,这个多边形的每一个外角均为,这个多边形的边数为,则选项B说法正确;这个多边形的内角

13、和为,则选项A说法正确;多边形的外角和为,选项D说法正确;各边相等,各内角也相等的多边形叫做正多边形,选项C说法错误;故选:C【点睛】本题考查了多边形的内角和与外角和、正多边形的定义,熟练掌握多边形的内角和与外角和是解题关键二、填空题1、【分析】根据多边形的内角和公式(n2)180以及外角和定理列出方程,然后求解即可【详解】解:设这个多边形的边数是n,根据题意得,(n2)1802360,解得n6答:这个多边形的边数是6故答案为:6【点睛】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是3602、8【分析】运用三角形的中位线的知识解答即可【详解

14、】解:ABC中,D、E分别是AB、AC的中点DE是ABC的中位线,BC=2DE=8cm故答案是8【点睛】本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键3、48【分析】根据题意可得:,再由平行四边形的面积公式整理可得:,根据两个等式可得:,代入平行四边形面积公式即可得【详解】解:ABCD的周长:,于E,于F,整理得:,ABCD的面积:,故答案为:48【点睛】题目主要考查平行四边形的性质及运用方程思想进行求解线段长,理解题意,熟练运用平行四边形的性质及其面积公式是解题关键4、8【分析】由D、E分别是AB、AC的中点可知,DE是ABC的中位线,根据三角形中位线定理解

15、答即可【详解】解:D、E分别是AB、AC的中点,DE是ABC的中位线,BC=2DE,DE=4,BC=2DE=24=8故答案为: 8【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半5、10【分析】先根据已知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可【详解】解:设这个正多边形是正n边形,根据题意得:(n-2)180=144n,解得:n=10故答案为:10【点睛】本题考查了正多边形的内角,在解题时要根据正多边形的内角和公式列出式子是本题的关键三、解答题1、(1)CDEF,CD=EF;(2)结论成立,理由见解析;(3)1或2【分析】(1)如图所示

16、,连接CE,延长BD交CE于H,先证明BADCAE得到BD=CE,ABD=ACE,然后证明四边形CDFE是平行四边形,即可得到CDEF,CD=EF;(2)连接CE,延长BD交CE于点H,交AC于点G, 类似(1)进行证明即可;(3)分两种情况:当D在直线AC的左侧和当D在直线AC的右侧,分别讨论求解即可【详解】解:(1)CDEF ,CD=EF,理由如下:如图所示,连接CE,延长BD交CE于H,ABC和ADE均为等腰直角三角形,BACDAE90,AB=AC,AE=AD,BADCAE(SAS),BD=CE,ABD=ACE,ABD+ADB=90,ADB=CDH,ACE+CDH=90,BHC=90,B

17、HE=90,由旋转的性质可得BDF=90,BD=FD,BDF=BHE=90,BD=CE,DFCE,四边形CDFE是平行四边形,CDEF,CD=EF;(2)结论成立,理由如下:连接CE,延长BD交CE于点H,交AC于点G,BAC=DAE=90,DAB=EAC=90-DAC,AB=AC ,AD=AE,ADBAEC(SAS),BD=CE ,DBA=ECA,BGA+DBA=90,BGA=CGH ,DBA=ECA,CGH+ECA=90,DHE=90,由旋转的性质可得BDF=90,BD=FD,DFCE,DF=BD,DFCE,CD=CE, 四边形DCEF是平行四边形 CDEF,CD=EF;(3)如图3所示,

18、当DAC=45时,设AC与DE交于H,ADE=90,EAC=ADC=45,又AD=AE,;,由(2)可知四边形DFEC是平行四边形,;如图4所示,当DAC=45时,DAC=ADE=45,ACDE,同理可证四边形CEFD是平行四边形,综上所述,DEF的面积为1或2【点睛】本题主要考查了旋转的性质,等腰直角三角形的性质与判定,全等三角形的性质与判定,平行四边形的性质与判定,解题的关键在于能够正确作出辅助线构造平行四边形求解2、(1)ACB是直角三角形,理由见解析;(2)D1(0,-1),D2(-4,1),D3(4,7)【分析】(1)根据勾股定理的判定即可确定ABC的形状;(2)根据平行四边的性质与

19、判定定理,结合图形,即可得出答案【详解】解:(1) , ACB是直角三角形;(2) D1(0,-1),D2(-4,1),D3(4,7)【点睛】本题考查了直角三角形的判定,平行四边形的性质和判定,平面直角坐标系中点的坐标,解题的关键结合平行四边形的性质写出点的坐标3、(1)以点C为旋转中心将逆时针旋转就得到;(2)见解析;(3)【分析】(1)只需要利用SAS证明BCFACG即可得到答案;(2)法一:以为边作,与的延长线交于点K,如图,先证明,然后证明, 得到,则,过点F作FMBC于M,求出,即可推出,则,即:;法二:过F作,先证明FCNFCM得到CM=CN,利用勾股定理和含30度角的直角三角形的

20、性质求出,再证明 得到,则;(3)如图3-1所示,连接,GM,AG,先证明ADE是等边三角形,得到DE=AE,即可证明得到,即点G在的角平分线所在直线上运动过G作,则,最小即是最小,故当M、G、P三点共线时,最小;如图3-2所示,过点G作GQAB于Q,连接DG,求出DM和QG的长即可求解【详解】(1)ABC和GEF都是等边三角形,BC=AC,CF=CG,ACB=FCG=60,ACB+ACF=FCG+ACF,FCB=GCA,BCFACG(SAS),BFC可以看作是AGC绕点C逆时针旋转60度所得;(2)法一:证明:以为边作,与的延长线交于点K,如图,和均为等边三角形,GFE=60,EFH+ACB

21、=180, 是等边的中线,在与中, ,过点F作FMBC于M,KM=CM,K=30,即:;法二证明:过F作,是等边的中线,FCNFCM(AAS),FC=2FN,CM=CN,同法一,在与中, ,;(3)如图3-1所示,连接,GM,AG,D,E分别是AB,AC的中点,DE是ABC的中位线,CDAB,DEBC,CDA=90,ADE=ABC=60,AED=ACB=60,ADE是等边三角形,FDE=30,DE=AE,GEF是等边三角形,EF=EG,GEF=60,AEG=AED+DEG=FEG+DEG=FED,即点G在的角平分线所在直线上运动过G作,则,最小即是最小,当M、G、P三点共线时,最小如图3-2所

22、示,过点G作GQAB于Q,连接DG,QG=PG,MAP=60,MPA=90,AMP=30,AM=2AP,D是AB的中点,AB=12,AD=BD=6,M是BD靠近B点的三等分点,MD=4,AM=10,AP=5,又PAG=30,AG=2GP,【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,含30度角的直角三角形的性,勾股定理,解题的关键在于能够正确作出辅助线求解4、(1)见解析;(2)8【分析】(1)根据“三线合一”性质先推出BAD=CAD,再结合平行线的性质推出BAD=ADE,从而得到ADE=EAD,即可根据“等角对等边”证明;(2)根据题意结合中位线定理可先推出AC=2D

23、E,然后在RtADC中利用勾股定理求解即可【详解】(1)证:在ABC中,ABAC,ABC为等腰三角形,ADBC于点D,由“三线合一”知:BAD=CAD,DEAB交AC于点E,BAD=ADE,CAD=ADE,即:ADE=EAD,AE=DE,ADE是等腰三角形;(2)解:由“三线合一”知:BD=CD,BC=12,DC=6,E为AC中点,DE为ABC的中位线,AB=2DE,AC=AB=2DE=10,在RtADC中,AD=8【点睛】本题考查等腰三角形的性质与判定,勾股定理解三角形,以及三角形的中位线定理等,掌握等腰三角形的基本性质,熟练运用中位线定理和勾股定理计算是解题关键5、【分析】先证明为的中位线,则证明再求解证明再利用三角形的内角和定理及平角的定义,从而可得答案.【详解】解: , 为的中位线, 【点睛】本题考查的是圆的基本性质,三角形中位线的定义与性质,三角形的内角和定理的应用,等腰三角形的性质,熟练的运用以上知识解题是关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁