2022年最新沪科版九年级数学下册第24章圆章节练习试卷.docx

上传人:知****量 文档编号:28161383 上传时间:2022-07-26 格式:DOCX 页数:32 大小:1.54MB
返回 下载 相关 举报
2022年最新沪科版九年级数学下册第24章圆章节练习试卷.docx_第1页
第1页 / 共32页
2022年最新沪科版九年级数学下册第24章圆章节练习试卷.docx_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《2022年最新沪科版九年级数学下册第24章圆章节练习试卷.docx》由会员分享,可在线阅读,更多相关《2022年最新沪科版九年级数学下册第24章圆章节练习试卷.docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB 为O 的直径,弦 CDAB,垂足为点 E,若 O的半径为5,CD=8,则AE的长为( )A3B2C1D2、

2、下列图形中,既是中心对称图形也是轴对称图形的是( )ABCD3、如图,DC是O的直径,弦ABCD于M,则下列结论不一定成立的是()AAM=BMBCM=DMCD4、的边经过圆心,与圆相切于点,若,则的大小等于( )ABCD5、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止设点的运动时间为,以点、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )ABCD6、如图图案中,不是中心对称图形的是( )ABCD7、在下列图形中,既是中心对称图形又是轴对称图形的是( )ABCD8、如图,ABC外接于O,A30,BC3,则O的半径长为( )

3、A3BCD9、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )A2个B3个C4个D5个10、如图,四边形内接于,如果它的一个外角,那么的度数为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形中,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为_(结果保留)2、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_3、如图所示,AB是O的直径,弦CDAB于H,A=30,OH=1,则O的半径是_4、如图,点D为边长是的等边AB

4、C边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持ADB120不变,则四边形ADBC的面积S的最大值是 _5、小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中为区别口味,他打算制作“* 饼干”字样的矩形标签粘贴在盒子侧面为了获得较好的视觉效果,粘贴后标签上边缘所在弧所对的圆心角为90(如图)已知该款圆柱形盒子底面半径为6 cm,则标签长度l应为_ cm(取3.1)三、解答题(5小题,每小题10分,共计50分)1、如图,正方形ABCD是半径为R的O内接四边形,R6,求正方形ABCD的边长和边心距2、如图,为的直径,为的切线,弦,直线交的延长线于点,连接求证:(1);(2)3

5、、如图,和中,连接,点M,N,P分别是的中点(1)请你判断的形状,并证明你的结论(2)将绕点A旋转,若,请直接写出周长的最大值与最小值4、如图,在RtABC中,B90,BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的O经过点D(1)求证:BC是O的切线;(2)若点F是劣弧AD的中点,且CE3,试求阴影部分的面积5、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F(1)如图,当点P在线段AB上运动时,若DBE30,PB2,求DE的长;(2)当点P在射线AB上运动时,试

6、探求线段AB,PB,PF之间的数量关系,并给出证明-参考答案-一、单选题1、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度【详解】解:连接OC,如图AB 为O 的直径,CDAB,垂足为点 E,CD=8,;故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出2、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形

7、,故此选项不符合题意故选:A【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合3、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得【详解】解:弦ABCD,CD过圆心O,AM=BM,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理4、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答

8、案【详解】解:连接, ,与圆相切于点,故选:A【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键5、A【分析】设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.【详解】解:设正六边形的边长为1,当在上时,过作于 而 当在上时,延长交于点 过作于 同理: 则为等边三角形, 当在上时,连接 由正六边形的性质可得: 由正六边形的对称性可得: 而 由正六边

9、形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.6、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识,解题的关键是掌握

10、中心对称图形的概念中心对称图形是要寻找对称中心,旋转180后重合7、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合叫作中心对称图形.8、A【分析】分析:连接OA、OB,根据圆周角定理

11、,易知AOB=60;因此ABO是等边三角形,即可求出O的半径【详解】解:连接BO,并延长交O于D,连结DC,A=30,D=A=30,BD为直径,BCD=90,在RtBCD中,BC=3,D=30,BD=2BC=6,OB=3故选A【点睛】本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30角所对直角三角形性质是解题的关键9、A【分析】根据轴对称图形与中心对称图形的概念进行判断【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不

12、符合题意;共2个既是轴对称图形又是中心对称图形故选:A【点睛】此题主要考查了中心对称图形与轴对称图形的概念(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴(2)如果一个图形绕某一点旋转180后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心10、D【分析】由平角的性质得出BCD=116,再由内接四边形对角互补得出A=64,再由圆周角定理即可求得BOD=2A=128【详解】四边形内接于又故选:D【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆

13、周角等于它所对的圆心角的一半二、填空题1、【分析】过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可【详解】解:过点C作于点H,在平行四边形中,平行四边形的面积为:,图中黑色阴影部分的面积为:,故答案为:【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键2、2【分析】根据扇形的面积公式S,代入计算即可【详解】解:“完美扇形”的周长等于6,半径r为2,弧长l为2,这个扇形的面积为:2答案为:2【点睛】本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成

14、底边上的高即可3、2【分析】连接OC,利用半径相等以及三角形的外角性质求得COH=60,OCH=30,利用30度角的直角三角形的性质即可求解【详解】解:连接OC,OA=OC,A=30,COH=2A=60,弦CDAB于H,OHC=90,OCH=30,OH=1,OC=2OH=2,故答案为:2【点睛】本题考查了垂径定理和含30角的直角三角形的性质熟练掌握垂径定理是解题的关键4、【分析】根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可【详解】解:根据题意作等边三角形的外接圆,D在运动过程中始终保持ADB120不变,在圆上运动,当点运动

15、到的中点时,四边形ADBC的面积S的最大值,过点作的垂线交于点,如图:,在中,解得:,过点作的垂线交于,故答案是:【点睛】本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质5、9.3【分析】根据弧长公式进行计算即可,【详解】解:粘贴后标签上边缘所在弧所对的圆心角为90,底面半径为6 cm,cm,故答案为:【点睛】本题考查了弧长公式,牢记弧长公式是解题的关键三、解答题1、边长为,边心距为【分析】过点O作OEBC,垂足为E,利用圆内接四边形的性质求出BOC=90,OBC=45,然后在RtOBE中,根据勾股定理求出OE、BE即可【详解】解:过点O作OEBC,垂

16、足为E,正方形ABCD是半径为R的O内接四边形,R6,BOC=90,OBC=45,OB=OC=6, BE=OE 在RtOBE中,BEO=90,由勾股定理可得OE2+BE2=OB2,OE2+BE2=36,OE= BE=, BC=2BE=, 即半径为6的圆内接正方形ABCD的边长为,边心距为【点睛】本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于2、(1)见解析;(2)见解析【分析】(1)连接,根据,可证从而可得,即可证明,故;(2)证明,可得,即可证明【详解】证明:(1)连接,如图

17、:为的直径,为的切线,在和中,为的直径,即, ,即,;(2)由(1)知:,又, ,【点睛】本题考查圆中的相似三角形判定与性质,涉及三角形全等的判定与性质,解题的关键是证明,从而得到3、(1)是等腰直角三角形,证明见解析(2)周长最小值为。最大值为【分析】(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题(1)连接BD,CE,如图, BD=CE,点M,N,P分别是的中点/,PN/BD,PN=BDPM=PN, PN/B

18、DPNC=DBCMPN=MPD+DPN=ECA+ACD+PCN+PNC=ACB+DBC+ABD=ACB+ABC=90 是等腰直角三角形;(2)由(1)知,是等腰直角三角形 的周长为 的周长为 当BD最小时即点D在AB上,此时周长最小,AB=8,AD=3BD的最小值为AB-AD=8-3=5周长最小为当点D在BA的延长线上时,BD最大,此时周长最大,BD=AB+AD=8+3=11周长最大为【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键4、(1)见解析;见解析;(2)【分析】(1)连接OD,由角平分线的性

19、质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;(2)证明是等边三角形,四边形DOAF是菱形,结合扇形面积公式解题【详解】解:(1)连接OD,是BAC的平分线是O的切线;连接DE,是O的切线,是直径(2)连接DE、OD、DF、OF,设圆的半径为R,点F是劣弧AD的中点,OF是DA中垂线DF=AF,是等边三角形,四边形DOAF是菱形,【点睛】本题考查圆的综合题,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关

20、知识是解题关键5、(1) (2)PF=AB-PB或PF=AB+PB,理由见解析【分析】(1)根据PBD等腰直角三角形,PB2,求出DB的长,由O是PBD的外接圆,DBE30,可得答案;(2)根据同弧所对的圆周角,可得ADP=FBP,由PBD等腰直角三角形,得DPB=APD=90,DP=BP,可证APDFPB,可得答案【详解】解:(1)由题意画以下图,连接EP,PBD等腰直角三角形,O是PBD的外接圆,DPB=DEB=90,PB2, ,DBE30, (2)点P在点A、B之间,由(1)的图根据同弧所对的圆周角相等,可得:ADP=FBP,又PBD等腰直角三角形,DPB=APD=90,DP=BP,在APD和FPB中APDFPBAP=FP,AP+PB=ABFP+PB=AB,FP=AB-PB,点P在点B的右侧,如下图:PBD等腰直角三角形,DPB=APF=90,DP=BP,PBF+EBP=180,PDA+EBP=180,PBF=PDA,在APD和FPB中APDFPBAP=FP,AB+PB=AP,AB+PB=PF,PF= AB+PB综上所述,FP=AB-PB或PF= AB+PB【点睛】本题考查了圆的性质,等腰直角三角形,三角形全等的判定,做题的关键是注意(2)的两种情况

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁