2022年最新强化训练沪科版九年级数学下册第24章圆课时练习试题(含详细解析).docx

上传人:知****量 文档编号:28161318 上传时间:2022-07-26 格式:DOCX 页数:31 大小:803.19KB
返回 下载 相关 举报
2022年最新强化训练沪科版九年级数学下册第24章圆课时练习试题(含详细解析).docx_第1页
第1页 / 共31页
2022年最新强化训练沪科版九年级数学下册第24章圆课时练习试题(含详细解析).docx_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《2022年最新强化训练沪科版九年级数学下册第24章圆课时练习试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练沪科版九年级数学下册第24章圆课时练习试题(含详细解析).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )ABCD2、如图,为的直径,为外一点,过作的切线,

2、切点为,连接交于,点在右侧的半圆周上运动(不与,重合),则的大小是( )A19B38C52D763、如图,ABC中,ACB90,ABC40将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )A50B70C110D1204、如图,DC是O的直径,弦ABCD于M,则下列结论不一定成立的是()AAM=BMBCM=DMCD5、下列图形中,可以看作是中心对称图形的是( )ABCD6、如图,A,B,C是正方形网格中的三个格点,则是( )A优弧B劣弧C半圆D无法判断7、如图,点A、B、C在上,则的度数是( )A100B50C40D258、小明将图案绕某点连续旋转若干次,每次旋转相同

3、角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )A30B60C90D1209、下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD10、如图,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为()A5厘米B4厘米C厘米D厘米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知60的圆心角所对的弧长是3.14厘米,则它所在圆的周长是_厘米2、圆锥的母线长为,底面圆半径为r,则全面积为_3、斛是中国古代的一种量器.据汉书 .律历志记载:“

4、斛底,方而圜(hun)其外,旁有庣(tio)焉”意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为_尺4、一个五边形共有_条对角线5、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:(1)如图(1)已知,点P在BC边所在的直线l上移动,小方发现AP的最小值是_;(2)如图(2)在直角中,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60,得到线段AP,连接CP,线段CP的最小值是_三、解答题(5小题,每

5、小题10分,共计50分)1、下面是“过圆外一点作圆的切线”的尺规作图过程已知:O和O外一点P求作:过点P的O的切线作法:如图,(1)连接OP;(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;(3)作直线MN,交OP于点C;(4)以点C为圆心,CO的长为半径作圆,交O于A,B两点;(5)作直线PA,PB直线PA,PB即为所求作O的切线完成如下证明:证明:连接OA,OB,OP是C直径,点A在C上OAP=90(_)(填推理的依据)OAAP又点A在O上,直线PA是O的切线(_)(填推理的依据)同理可证直线PB是O的切线2、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程

6、.已知:O.求作:O的内接等腰直角三角形ABC. 作法:如图,作直径AB;分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC= AB是直径,ACB= ( ) (填写推理依据) ABC是等腰直角三角形3、如图,抛物线yx2与x轴负半轴交于点A,与y轴交于点B(1)求A,B两点的坐标;(2)如图1,点C在y轴右侧的抛物线上,且AC

7、BC,求点C的坐标;(3)如图2,将ABO绕平面内点P顺时针旋转90后,得到DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上 求点F的坐标;直接写出点P的坐标 4、如图,已知等边内接于O,D为的中点,连接DB,DC,过点C作AB的平行线,交BD的延长线于点E(1)求证:CE是O的切线;(2)若AB的长为6,求CE的长5、新定义:在平面直角坐标系xOy中,若几何图形G与A有公共点,则称几何图形G为A的关联图形,特别地,若A的关联图形G为直线,则称该直线为A的关联直线如图1,M为A的关联图形,直线l为A的关联直线(1)已知O是以原点为圆心,2为半径的圆,下列图形:直线y2

8、x+2;直线yx+3;双曲线y,是O的关联图形的是 (请直接写出正确的序号)(2)如图2,T的圆心为T(1,0),半径为1,直线l:yx+b与x轴交于点N,若直线l是T的关联直线,求点N的横坐标的取值范围(3)如图3,已知点B(0,2),C(2,0),D(0,2),I经过点C,I的关联直线HB经过点B,与I的一个交点为P;I的关联直线HD经过点D,与I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x6上且恰为I的直径,请直接写出点H横坐标h的取值范围-参考答案-一、单选题1、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即

9、可求出阴影部分的面积【详解】解:由图可知:阴影部分的面积=扇形扇形,由旋转性质可知:,在中,有勾股定理可知:,阴影部分的面积=扇形扇形 故选:B【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键2、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.3、B【分析】根据旋转可得,得【详解

10、】解:,将绕点逆时针旋转得到,使点的对应点恰好落在边上,故选:B【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质4、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得【详解】解:弦ABCD,CD过圆心O,AM=BM,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理5、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解【详解】A不是中心对

11、称图形,故本选项不符合题意;B是中心对称图形,故本选项符合题意;C不是中心对称图形,故本选项不符合题意;D不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合6、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断【详解】解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心故选:B【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键7、C【分析】先根据圆周角定理求出AOB的度数,再由等腰三角形的性质即可得出结论【详解】ACB=50,A

12、OB=100,OA=OB,OAB=OBA= 40,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半8、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数9、B【分析】根据“把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果

13、一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键10、D【分析】根据题意先求出弦AC的长,再过点O作OBAC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中根据勾股定理求出r的值即

14、可【详解】解:杯口外沿两个交点处的读数恰好是2和8,AC=8-2=6厘米,过点O作OBAC于点B,则AB=AC=6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=厘米故选:D【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键二、填空题1、18.84【分析】先根据弧长公式求得r,然后再运用圆的周长公式解答即可【详解】解:设圆弧所在圆的半径为厘米,则,解得,则它所在圆的周长为(厘米),故答案为:【点睛】本题主要考查了弧长公式、圆的周长公式等知识点,牢记弧长公式是解答本题的关键2、

15、【分析】根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案【详解】解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,故可得,这个扇形的半径为,扇形的弧长为,圆锥的侧面积为;圆锥的全面积为圆锥的底面积侧面积:故答案为:【点睛】本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般3、【分析】如图,根据四边形CDEF为正方形,可得D=90,CD=DE,从而得到CE是直径,ECD=45,然后利用勾股定理,即可求解【详解】解:如图, 四边形CDEF为正方形,D=

16、90,CD=DE,CE是直径,ECD=45,根据题意得:AB=2.5, , , ,即此斛底面的正方形的边长为 尺故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键4、5【分析】由n边形的对角线有: 条,再把代入计算即可得【详解】解:边形共有条对角线,五边形共有条对角线故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键5、10 5 【分析】(1)如图,作AHBC于H根据垂线段最短,求出AH即可解决问题(2)如图,在AB上取一点K,使得AKAC,连接CK,DK由PACDAK(SAS),推出PCDK,易知K

17、DBC时,KD的值最小,求出KD的最小值即可解决问题【详解】解:如图作AHBC于H,ABAC20, , , ,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为10AP的最小值是10;(2)如图,在AB上取一点K,使得AKAC,连接CK,DKACB90,B30,CAK60,PADCAK,PACDAK,PADA,CAKA,PACDAK(SAS),PCDK,KDBC时,KD的值最小, , 是等边三角形, ,PC的最小值为5【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题三、解答题1、直径所对的圆周角是

18、直角 经过半径的外端并且垂直于这条半径的直线是圆的切线 【分析】连接OA,OB,根据圆周角定理可知OAP=90,再依据切线的判定证明结论;【详解】证明:连接OA,OB,OP是C直径,点A在C上,OAP=90(直径所对的圆周角是直角),OAAP又点A在O上,直线PA是O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),同理可证直线PB是O的切线,故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线2、(1)见解析;(2)BC,90,直径所对的圆周角是直角【分析】(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交O于点C,D;连结AC、

19、BC即可;(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出ACB=90即可【详解】(1)作直径AB;分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.(2)证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC=BCAB是直径,ACB=90(直径所对的圆周角是直角) ABC是等腰直角三角形故答案为:BC,90,直径所对的圆周角是直角【点睛】本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线

20、判定与性质是解题关键3、(1)A(-1,0),B(0,2);(2)点C的坐标(,);(3)求点F的坐标(1,2);点P的坐标(,)【分析】(1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;(2)设C的坐标为(x,x2),根据ACBC,得到,令t=x,解方程即可;(3)根据题意,得BPE=90,PB=PE即点P在线段BE的垂直平分线上,根据B,E都在抛物线上,则B,E是对称点,从而确定点P在抛物线的对称轴上,点F在BE上,且BEx轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;根据BE=3,BPE=90,PB=PE,确

21、定P到BE的距离,即可写出点P的坐标【详解】(1)令x=0,得y=2,点B的坐标为B(0,2);令y=0,得x2=0,解得 点A在x轴的负半轴;A点的坐标(-1,0);(2)设C的坐标为(x,x2),ACBC,A(-1,0),B(0,2),A(-1,0),B(0,2),即,设t=x,整理,得,解得点C在y轴右侧的抛物线上,此时y=,点C的坐标(,);(3)如图,根据题意,得BPE=90,PB=PE即点P在线段BE的垂直平分线上,B,E都在抛物线上,B,E是对称点,点P在抛物线的对称轴上,点F在BE上,且BEx轴,抛物线的对称轴为直线x=,B(0,2),点E(3,2),BE=3,EF=BO=2,

22、BF=1,点F的坐标为(1,2);如图,设抛物线的对称轴与BE交于点M,交x轴与点N,BE=3,BM=,BPE=90,PB=PE,PM=BM=,PM=BM=,PN=2-=,点P的坐标为(,)【点睛】本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键4、(1)见解析;(2)3【分析】(1)由题意连接OC,OB,由等边三角形的性质可得ABC=BCE=60,求出OCB=30,则OCE=90,结论得证;(2)根据题意由条件可得DBC=30,BEC=90,进而即可求出CE=BC3【详解

23、】解:(1)证明:如图连接OC、OB是等边三角形 又 与O相切; (2)四边形ABCD是O的内接四边形,D为的中点, 【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识解题的关键是正确作出辅助线,利用圆的性质进行求解5、(1);(2)点N的横坐标;(3)或【分析】(1)在坐标系中作出圆及三个函数图象,即可得;(2)根据题意可得直线l的临界状态是与圆T相切的两条直线和,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;(3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:当点Q在点P的上方时

24、,连接BP、DQ,交于点H;当点P在点Q的上方时,直线BP、DQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;当时,两条直线与圆无公共点;综合三种情况即可得【详解】解:(1)在坐标系中作出圆及三个函数图象,可得函数解析式与圆有公共点,故答案为:;(2)如图所示:直线l是的关联直线,直线l的临界状态是与相切的两条直线和,当临界状态为时,连接TM,当时,当时,为等腰直角三角形,点,同理可得当临界状态为时,点,点N的横坐标;(3)如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BP、DQ,交于点H;设点,直线HB的解析式为,直线HD的解析式为,当时,与互为相反数,可得,得,由图可得:,则,结合,解得:,当时,h的最大值为,如图所示:当点P在点Q的上方时,直线BP、DQ,交于点H,当圆心I在x轴上时, 设点,直线HB的解析式为,直线HD的解析式为,当时,与互为相反数,可得,得,由图可得:,则,结合,解得:,当时,h的最小值为,当时,两条直线与圆无公共点,不符合题意,综上可得:或【点睛】题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁