《2022年最新精品解析沪教版(上海)七年级数学第二学期第十三章相交线-平行线章节练习试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年最新精品解析沪教版(上海)七年级数学第二学期第十三章相交线-平行线章节练习试题(含解析).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学第二学期第十三章相交线 平行线章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线ABCD,直线AB、CD被直线EF所截,交点分别为点M、点N,若AME130,则DNM的度数为(
2、)A30B40C50D602、已知的两边分别平行于的两边若60,则的大小为()A30B60C30或60D60或1203、如图,1与2是同位角的是( ) ABCD4、如图,ACBC,CDAB,则点C到AB的距离是线段()的长度ACDBADCBDDBC5、如果同一平面内有三条直线,那么它们交点个数是( )个A3个B1或3个C1或2或3个D0或1或2或3个6、若直线ab,bc,则ac的依据是( )A平行的性质B等量代换C平行于同一直线的两条直线平行D以上都不对7、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:已知:如图,ba,ca,求证:bc;证明:作直线DF交直线a、b、c分
3、别于点D、E、F,ab,14,又ac,15,bc小明为保证嘉淇的推理更严谨,想在方框中“15”和“bc”之间作补充,下列说法正确的是()A嘉淇的推理严谨,不需要补充B应补充25C应补充3+5180D应补充458、如图,ABEF,则A,C,D,E满足的数量关系是( )AA+C+D+E360BA+DC+ECAC+D+E180DEC+DA909、一副直角三角板如图放置,点C在FD的延长线上,ABCF,FACB90,A60,则DBC的度数为( )A45B25C15D2010、如图,在、两地之间要修条笔直的公路,从地测得公路走向是北偏东,两地同时开工,若干天后公路准确接通,若公路长千米,另一条公路长是千
4、米,且从地测得公路的走向是北偏西,则地到公路的距离是( )A千米B千米C千米D千米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知,CE平分,则_2、如图,已知是上一点,平分交于点,则的度数为_3、已知两个角的两边分别平行,其中一个角为40,则另一个角的度数是_4、判断正误:(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角( )(2)如果两个角相等,那么这两个角是对顶角( )(3)有一条公共边的两个角是邻补角( )(4)如果两个角是邻补角,那么它们一定互补( )(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )5、将含30角的三角板如图
5、摆放,ABCD,若20,则的度数是_三、解答题(10小题,每小题5分,共计50分)1、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上将AEF沿折痕EF翻折,点A落在点A处;将DEG沿折痕EG翻折,点D落在点D处(1)如图1,若AEF40,DEG35,求AED的度数;(2)如图1,若AED,求FEG的度数(用含的式子表示);(3)如图2,若AED,求FEG的度数(用含的式子表示)2、如图,方格纸中每个小正方形的边长都是1(1)过点P分别画PMAC、PNAB,PM与AB相交于点M,PN与AC相交于点N(2)求四边形PMAN的面积3、如图所示,M、N是直线AB上两点,12,问1与2
6、,3与4是对顶角吗? 1与5,3与6是邻补角吗?4、如图所示,直线AB、CD相交于点O,165,求2、3、4的度数5、如图,直线AB与CD相交于点O,OE是COB的平分线,OEOF,AOD=74,求COF的度数6、已知:如图,ABCD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,EFG90(1)如图,若BEF130,则FGC 度;(2)小明同学发现:如图,无论BEF度数如何变化,FEBFGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EMFG,交CD于点M请你根据小明同学提供的辅助线方法,补全下面的证明过程;(3)拓展应用:如图,如果把题干中的“EFG90”条
7、件改为“EFG110”,其它条件不变,则FEBFGC 度解:如图,过点E作EMFG,交CD于点MABCD(已知)BEMEMC( )又EMFGFGCEMC( )EFG+FEM180( )即FGC( )(等量代换)FEBFGCFEBBEM( )又EFG90FEM90FEBFGC 即:无论BEF度数如何变化,FEBFGC的值始终为定值7、如图,已知,平分,平分,求证证明:平分(已知), ( ),同理 , ,又(已知) ( ),8、如图,点A、B、C在85网格的格点上,每小方格是边长为1个单位长度的正方形请按要求画图,并回答问题:(1)延长线段AB到点D,使BDAB;(2)过点C画CEAB,垂足为E;
8、(3)点C到直线AB的距离是 个单位长度;(4)通过测量 ,并由此结论可猜想直线BC与AF的位置关系是 9、如图,在中,平分交于D,平分交于F,已知,求证:10、已知直线AB和CD交于点O,AOC,BOE90,OF平分AOD(1)当30时,则EOC_;FOD_(2)当60时,射线OE从OE开始以12/秒的速度绕点O逆时针转动,同时射线OF从OF开始以8/秒的速度绕点O顺时针转动,当射线OE转动一周时射线OF也停止转动,求经过多少秒射线OE与射线OF第一次重合?(3)在(2)的条件下,射线OE在转动一周的过程中,当EOF90时,请直接写出射线OE转动的时间为_秒-参考答案-一、单选题1、C【分析
9、】由对顶角得到BMN=130,然后利用平行线的性质,即可得到答案【详解】解:由题意,BMN与AME是对顶角,BMN=AME=130,ABCD,BMN+DNM=180,DNM=50;故选:C【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到BMN=1302、D【分析】根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出1,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,+2180,再根据两直线平行,内错角相等,2,即可得出答案【详解】解:如图1,ab,1,cd,160;如图(2),ab,+2180,cd,2,+180,60,120
10、综上,60或120故选:D【点睛】本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键3、B【分析】同位角就是两个角都在截线的同旁,又分别处在被截线的两条直线的同侧位置的角【详解】根据同位角的定义可知中的1与2是同位角;故选B【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键4、A【分析】根据和点到直线的距离的定义即可得出答案【详解】解:,点到的距离是线段的长度,故选:A【点睛】本题考查了点到直线的距离,理解定义是解题关键5、D【分析】根据三条直线是否有平行线分类讨论即可【详解】解:当三条直线平行时,交点个数为0;当三条直线相交于1点时,交点个数为1;当三条直线中,有
11、两条平行,另一条分别与他们相交时,交点个数为2;当三条直线互相不平行时,且交点不重合时,交点个数为3;所以,它们的交点个数有4种情形故选:D【点睛】本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论6、C【分析】根据平行公理的推论进行判断即可【详解】解:直线ab,bc,则ac的依据是平行于同一直线的两条直线平行,故选:C【点睛】本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行7、D【分析】根据平行线的性质与判定、平行公理及推论解决此题【详解】解:证明:作直线DF交直线a、b、c分别于点D、E、F,ab,1=4,又ac,1=5,4=5bc
12、应补充4=5故选:D【点睛】本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键8、C【分析】如图,过点C作CGAB,过点D作DHEF,根据平行线的性质可得AACG,EDH180E,根据ABEF可得CGDH,根据平行线的性质可得CDHDCG,进而根据角的和差关系即可得答案【详解】如图,过点C作CGAB,过点D作DHEF,AACG,EDH180E,ABEF,CGDH,CDHDCG,ACDACG+CDHA+CDE(180E),AACD+CDE+E180故选:C【点睛】本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线
13、平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键9、C【分析】直接利用三角板的特点,结合平行线的性质得出ABD=45,进而得出答案【详解】解:由题意可得:EDF=45,ABC=30,ABCF,ABD=EDF=45,DBC=45-30=15故选:C【点睛】此题主要考查了平行线的性质,根据题意得出ABD的度数是解题关键10、B【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解【详解】解:根据两直线平行,内错角相等,可得ABG48,ABC180ABGEBC180484290,ABBC,A地到公路BC的距离是AB8千米,故选B【点睛】此题是方向角问题,结合生活中的实际
14、问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想二、填空题1、65【分析】由平行线的性质先求解再利用角平分线的定义可得答案.【详解】解: , , CE平分, 故答案为:【点睛】本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.2、【分析】根据平行线的性质可得,根据平分线的性质可得,进而即可求得的度数【详解】,平分,故答案为:【点睛】本题考查了平行线的性质,角平分线的定义,掌握平行线的性质是解题的关键3、40【分析】由两角的两边互相平行可得这两个角相等或互补,再由其中一个角为 ,即可得出答案【详解】解:因为两个角的两边互相平行,所以这两个
15、角相等或互补,若这两个角相等,因为其中一个角为,所以另一个角的度数为;若这两个角互补,则另一个角的度数为 ;故答案为或 【点睛】此题考查了平行线的性质和补角的定义,属于基本题型,正确分类,熟练掌握平行线的性质是关键4、(1);(2);(3);(4);(5)【分析】根据对顶角与邻补角的定义与性质分析判断即可求解【详解】(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;(2)如果两个角相等,那么这两个角不一定是对顶角,错误;(3)有一条公共边的两个角不一定是邻补角,错误;(4)如果两个角是邻补角,那么它们一定互补,正确;(5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补
16、角,错误;故答案为:(1);(2);(3);(4);(5)【点睛】本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角5、50【分析】三角形的外角等于不相邻的两个内角和,同位角相等可得出,从而得到的值【详解】解:如图故答案为:【点睛】本题考察了三角形的外角,平行线的性质解题的关键在于角度之间的转化和等量关系三、解答题1、(1);(2);(3)【分析】(1)由折叠的性质,得到,然后由邻补角的定义,即可
17、求出答案;(2)由折叠的性质,先求出,然后求出FEG的度数即可;(3)由折叠的性质,先求出,然后求出FEG的度数即可【详解】解:(1)将AEF沿折痕EF翻折,点A落在点A处;将DEG沿折痕EG翻折,点D落在点D处,;(2)根据题意,则,;(3)根据题意,;【点睛】本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,2、(1)见解析;(2)18【分析】(1)直接利用网格结合平行线的判定方法得出答案;(2)利用四边形PMAN所在矩形减去周围三角形面积得出答案【详解】解:(1)如图所示:点M,点N即为所求;(2)四边形PMAN的面积为:573324243318【点睛】本题考
18、查网格与作图作直线外一点作已知直线的平行线,网格图形面积等知识,是基础考点,掌握相关知识是解题关键3、1和2,3和4都不是对顶角,1与5,3与6也都不是邻补角【分析】根据对顶角和邻补角的定义求解即可【详解】解:根据对顶角的定义可得:1和2,3和4都不是对顶角;根据邻补角的定义可得,1与5,3与6也都不是邻补角【点睛】此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。4、2115,365,41
19、15【分析】根据对顶角相等和邻补角定义可求出各个角.【详解】解:1=65,1=3,3=65,1=65,1+2=180,2=180-65=115,又2=4,4=115【点睛】本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.5、53【分析】首先根据对顶角相等可得BOC=74,再根据角平分线的性质可得COE=COB=37,再利用余角定义可计算出COF的度数【详解】解:AOD=74,BOC=74,OE是COB的平分线,COE=COB=37,OEOF,EOF=90,COF=90-37=53【点睛】本题考查了角平分线的性质、余角、对顶角的性质,关键是掌握对顶角相等,角平分线把角分
20、成相等的两部分6、(1)40;(2)见解析;(3)70【分析】(1)过点F作FNAB,由FEB150,可计算出EFN的度数,由EFG90,可计算出NFG的度数,由平行线的性质即可得出答案;(2)根据题目补充理由和相关结论即可;(3)类似(2)中的方法求解即可【详解】解:(1)过点F作FNAB,FNAB,FEB130,EFN+FEB180,EFN180FEB18013050,EFG90,NFGEFGEFN905040,ABCD,FNCD,FGCNFG40故答案为:40;(2)如图,过点E作EMFG,交CD于点MABCD(已知)BEMEMC(两直线平行,内错角相等)又EMFGFGCEMC(两直线平
21、行,同位角相等)EFG+FEM180(两直线平行,同旁内角互补)即FGC(BEM)(等量代换)FEBFGCFEBBEM(FEM)又EFG90FEM90FEBFGC90故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,BEM,FEM,90(3)过点E作EHFG,交CD于点HABCDBEHEHC又EMFGFGCEHCEFG+FEH180即FGCBEHFEBFGCFEBBEHFEH又EFG110FEH70FEBFGC70故答案为:70【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键7、ABC;角平分线的定义;BCD;(AB
22、C+BCD);180;两直线平行,同旁内角互补【分析】由平行线的性质可得到BAC+ACD=180,再结合角平分线的定义可求得1+2=90,可得出结论,据此填空即可【详解】证明:BE平分ABC(已知),2=ABC(角平分线的定义),同理1=BCD,1+2=(ABC+BCD),又ABCD(已知)ABC+BCD=180(两直线平行,同旁内角互补),1+2=90故答案为:ABC;角平分线的定义;BCD;(ABC+BCD);180;两直线平行,同旁内角互补【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键8、(1)见解析;(2)见解析;(3)2;(4),平行【分析】(1)根据
23、网格的特点和题意,延长到,使;(2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,(3)点C到直线AB的距离即的长,网格的特点即可数出的长;(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度【详解】解:(1)(2)如图所示, (3)由网格可知即点C到直线AB的距离是个单位长度故答案为:2(4)通过测量,可知故答案为:,平行【点睛】本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键9、见解析【分析】根据ADE=B可判定DEBC,根据平行线的性质得到ACB=AED,再根据角平分线的定义推出ACD=AEF,即可判定
24、EFCD【详解】证明:(已知),(同位角相等,两直线平行),(两直线平行,同位角相等),平分,平分(已知),(角平分线的定义),(等量代换).(同位角相等,两直线平行).【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键10、(1)60,75;(2)秒;(3)3或12或21或30【分析】(1)根据题意利用互余和互补的定义可得:EOC与FOD的度数(2)由题意先根据,得出EOF=150,则射线OE、OF第一次重合时,其OE运动的度数+OF运动的度数=150,列式解出即可;(3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间【详解】解:(1)BOE=90,AOE=90,AOC=30,EOC=90-30=60,AOD=180-30=150,OF平分AOD,FOD=AOD=150=75;故答案为:60,75;(2)当,设当射线与射线重合时至少需要t秒,可得,解得:;答:当射线与射线重合时至少需要秒;(3)设射线转动的时间为t秒,由题意得:或或或,解得:或12或21或30答:射线转动的时间为3或12或21或30秒【点睛】本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论