《2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题专项练习试卷.docx》由会员分享,可在线阅读,更多相关《2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题专项练习试卷.docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二十六章 综合运用数学知识解决实际问题专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明是七年级的一名学生,他的身高可能是( )A165mmB165cmC165dmD165m2、设“”表示三种
2、不同的物体,现用天平称了两次,情况如图,那么“”中质量最大的是( ) ABCD无法判断3、,则( )AB0C32D644、方程的不同有理根的个数是( )A0B1C2D45、我区面积3424平方公里(1公里=1千米),请你估计,它的百万分之一大约相当于()A一间教室的面积B一块操场的面积C一张黑板的面积D一张课桌的面积6、我们这样来探究二次根式的结果,当a0时,如a=3,则=3,此时的结果是a本身;当a=0时, =0此时的结果是零;当a0时,如a=3,则=(3)=3,此时的结果是a的相反数这种分析问题的方法所体现的数学思想是()A分类讨论B数形结合C公理化D转化7、某校数学兴趣小组为测量学校旗杆
3、AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为( )A6米B7米C8.5米D9米8、下列方法中,不能用于检验平面与平面是否垂直的是( )A长方形纸片B三角尺C合页型折纸D铅垂线9、把点A(2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是( ).A(5,3)B(1,3)C(1,3)D(5,1)10、某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校如图描述了他上学的情景,下列说法中错误的是()A自行车发生故障时离家距离为1000米B学校
4、离家的距离为2000米C到达学校时共用时间20分钟D修车时间为15分钟第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、观察下列球的排列规律(其中是实心球,是空心球):从第1个球起到第2004个球止,共有实心球_个2、有这样一个语句:“印花税就是开启帐簿(记载资金帐和其他帐簿)、书立产权转移书据(办产权、销售房屋等)、签立合同(不论合同是否兑现、不论合同几时兑现)、办理权利许可证照(如工商执照、商标注册证等)时缴纳的税”._(填“是 ”或“不是”)印花税的定义;3、一根绳子长5米,先用去,再用米,这时还剩余_米.4、多项式能被整除,则_,_5、已知,是不相等的正实数,且,
5、则的取值范围为_三、解答题(5小题,每小题10分,共计50分)1、某班参加校运动会的19名运动员的运动服号码恰是119号,这些运动员随意地站成一个圆圈,则一定有顺次相邻的某3名运动员,他们运动服号码数之和不小于32,请你说明理由2、图1是某小型汽车的侧面示意图,其中矩形表示该车的后备箱,在打开后备箱的过程中,箱盖可以绕点A逆时针方向旋转,当旋转角为60时,箱盖落在的位置(如图2所示),已知厘米,厘米,厘米(1)求点到的距离;(2)求E、两点的距离3、已知函数,分别按下列要求求实数a的取值范围;(1)方程有实根;(2)方程有两个不等实根;(3)方程在有且只有一个实根4、猜谜语(各打数学中常用字)
6、:千人分在北上下;1人立在口上边5、(生活观察)甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:菜价元千克质量金额甲千克元乙千克元菜价元千克质量金额甲千克_元乙_千克元(1)完成上表;(2)计算甲两次买菜的均价和乙两次买菜的均价(均价总金额总质量)(数学思考)设甲每次买质量为千克的菜,乙每次买金额为元的菜,两次的单价分别是元千克、元千克,用含有、的式子,分别表示出甲、乙两次买菜的均价、比较、的大小,并说明理由(知识迁移)某船在相距为的甲、乙两码头间往返航行一次,在没有水流时,船的速度为所需时间为:如果水流速度为时(),船顺水航行速度为(),逆水航行速度
7、为(),所需时间为请借鉴上面的研究经验,比较、的大小,并说明理由-参考答案-一、单选题1、B【解析】【分析】根据生活实际以及长度的度量进行判断即可.【详解】A、165mm,人的身高不可能这么矮,故A 不符合实际; B、165cm,符合实际;C、165dm就是16.5m,人的身高不可能这么高,故C不符合实际;D、165m,人的身高不可能这么高,故D不符合实际,故选B.【点睛】本题考查了对于生活中数据的估测,应从实际的角度出发进行判断,也可从自己的角度出发判断,对日常生活中的一些相关数据有所了解是解题的关键.2、A【分析】根据题中的两个图找出重量关系,比较即可【详解】由第一个图可知, 由第二个图可
8、知, 故选A【点睛】本题主要考查了物体的重量大小比较,正确掌握图中物体重量的大小关系是解题的关键3、C【分析】将x=1代入可知a12+a11+a10+a1x+a0的值,将x=-1代入可求得a12-a11+a10-a9+-a1x+a0的值,然后将两式相加可求得a12+a10+a8+a6+a4+a2+a0的值,最后将x=0代入可求得a0的值【详解】解:将x=1代入得:a12+a11+a10+a1x+a0=64,将x=-1代入得:a12-a11+a10-a9+-a1x+a0=0,+得:2(a12+a10+a8+a6+a4+a2+a0)=64a12+a10+a8+a6+a4+a2+a0=32将x=0代
9、入得:a0=64a12+a10+a8+a6+a4+a2=32-64=-32故选:C【点睛】本题主要考查的是求代数式的值,特殊值法的应用是解题的关键4、C【分析】首先观察x=1是方程的一个根故可以把方程x4-6x3+13x2-12x+4=0化成(x-1)(x3-5x2+8x-4)=0,再次发现x=1是方程x3-5x2+8x-4=0的一个有理根,于是原方程可以化为(x-1)2(x2-4x+4)=0,即可求出不同有理数的个数【详解】解:观察可知x=1是方程x4-6x3+13x2-12x+4=0的一个根,即(x-1)(x3-5x2+8x-4)=0,观察可知x=1还是x3-5x2+8x-4=0,原方程可
10、以化为(x-1)2(x2-4x+4)=0,解得x=1或2,原方程的不同有理根有2个,故选C【点睛】本题主要考查高次方程的知识点,解答本题的关键是把方程x4-6x3+13x2-12x+4=0进行因式分解,此题难度不大5、B【分析】首先算出3424平方公里的百万分之一大约是多少,然后与选择项比较即可【详解】3424平方公里=3424平方千米=3424000000平方米,3424000000=3424平方米,应是一块操场的面积故选B【点睛】解决本题的关键是把我区面积进行合理换算,得到相应的常见的值6、A【解析】根据题意可知,探究过程是分三种情况讨论的,因此可知体现了数学思想是:分类讨论.故选A7、D
11、【详解】试题分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似根据相似三角形的对应边的比相等,即可求解解:DEAB,DFAC,DEFABC,=,即=,AC=61.5=9米故答案为9【点评】此题考查相似三角形的实际运用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题8、A【分析】A. 长方形纸片的长和宽互相垂直,不能判定平面与平面是否垂直;B. 根据三角尺两直角边成直角性质解题即可;C. 根据合页型折纸其折痕与纸被折断的一边垂直解题;D. 铅垂线垂直于水平面,据此解题【详解】A. 长方形纸片
12、的长和宽互相垂直,不能判定平面与平面是否垂直,故A符合题意;B. 将两块三角形的直角边重合,另外两条直角边相交,放在水平面上,可判断重合的直角边垂直于水平面,故B不符合题意;C. 合页型折纸其折痕与纸被折断的一边垂直,即折痕与被折断的两线段垂直,把它们放到水平面上,可判断折痕与水平面垂直,故C不符合题意;D. 根据重力学原理,铅垂线垂直于水平面,可检验平面与平面垂直, 故D不符合题意故选:A【点睛】本题考查垂线的性质,是常见基础考点,掌握相关知识、联系生活实际是解题关键9、B【详解】A(-2,1)向上平移2个单位,再向右平移3个单位后得到B,1+2=3,-2+3=1;点B的坐标是(1,3)故选
13、B10、D【分析】观察图象,明确每一段小明行驶的路程、时间,作出判断.【详解】、自行车发生故障时离家距离为米,正确;、学校离家的距离为米,正确;、到达学校时共用时间分钟,正确;、由图可知,修车时间为分钟,可知错误.故选:.【点睛】此题考查了学生从图象中获取信息的数形结合能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.二、填空题1、【分析】解决此题的关键是找到规律:每10个球一组;第1,4,5为实心球,第2,3,6,7,8,9,10个为空心球【详解】解:这些球,从左到右,按照固定的顺序排列,每隔10个球循环一次,循环节是每个循环节里有3个实心球我们只要知道2004包含有多少
14、个循环节,就容易计算出实心球的个数2004102004,2004个球里有200个循环节,还余4个球200个循环节里有2003=600个实心球,剩下的4个球里有2个实心球所以,一共有602个实心球2、是【解析】【分析】定义:对概念的内涵或词语的意义所做的简要而准确的描述.【详解】根据定义的概念易知应该填“是”.【点睛】了解定义的概念是解题的关键.3、【详解】试题分析:一根绳子先用去则还剩5(1-) =4米,在用去 米,还剩4-=米,故答案为米【点睛】解答本题的关键是把绳子长度看作单位“1”,依据分数乘法的意义,求出第一次用去的长度,依据是等量关系式:剩余长度=总长度-第一次用去长度-第二次用去长
15、度此为易考点4、-11 4 【分析】设多项式和多项式的商为,通过和乘积与原多项式各项系数对比可求出b和c的值,从而得到m和n.【详解】解:多项式能被整除,设()()=,则()()=,可得,解得:,m=-3-2c=-11,n=c=4,故答案为:-11,4.【点睛】本题考查了多项式的乘除法,解题的关键是掌握运算法则.5、【分析】根据题意及立方差公式的展开形式可得出,然后可求出ab与a+b的关系式,结合基本不等式即可得出答案.【详解】解:,a,b为不相等的两正数,又,解得,故答案为:.【点睛】本题考查基本不等式、立方公式的应用,难度不大,注意掌握立方公式的特点,结合完全平方式是解决本题的关键.三、解
16、答题1、一定有顺次相邻的某三名运动员,他们运动服号码数之和不小于32【解析】试题分析:由已知,119号运动员随意地站成一个圆圈,求出6组有顺次相邻的某3名运动员的号码的和,从每组都小于等于31,得6组的和与计算出6组的和矛盾确定一定有顺次相邻的某三名运动员,他们运动服号码数之和不小于32试题解析:设在圆周上按逆时针顺序以1号为起点记运动服号码数为a1 , a2 , a3 , ,a18 , a19 , 显然a1=1,而a2 , a3 , ,a18 , a19就是2,3,4,5,6,18,19的一个排列令A1=a2+a3+a4;A2=a5+a6+a7;A3=a8+a9+a10;A4=a11+a12
17、+a13;A5=a14+a15+a16;A6=a17+a18+a19;则A1+A2+A3+A4+A5+A6;=a2+a3+a4+a17+a18+a19;=2+3+4+17+18+19;=189(*)如果A1 , A2 , A3 , A4 , A5 , A6中每一个都31,则有A1+A2+A3+A4+A5+A6631=186,与(*)式矛盾所以A1 , A2 , A3 , A4 , A5 , A6中至少有一个大于31为确定起见,不妨就是A131,即a2+a3+a431,但a2+a3+a4是整数,所以必有a2+a3+a432成立所以,一定有顺次相邻的某三名运动员,他们运动服号码数之和不小于322、
18、(1)点D到BC的距离为(45+70)厘米;(2)E、E两点的距离是厘米【分析】(1)过点D作DHBC,垂足为点H,交AD于点F,利用旋转的性质可得出AD=AD=90厘米,DAD=60,利用矩形的性质可得出AFD=BHD=90,在RtADF中,通过解直角三角形可求出DF的长,结合FH=DC=DE+CE及DH=DF+FH可求出点D到BC的距离;(2)连接AE,AE,EE,利用旋转的性质可得出AE=AE,EAE=60,进而可得出AEE是等边三角形,利用等边三角形的性质可得出EE=AE,在RtADE中,利用勾股定理可求出AE的长度,结合EE=AE可得出E、E两点的距离【详解】解:(1)过点D作DHB
19、C,垂足为点H,交AD于点F,如图3所示由题意,得:AD=AD=90厘米,DAD=60四边形ABCD是矩形,ADBC,AFD=BHD=90在RtADF中,DF=ADsinDAD=90sin60=45厘米又CE=40厘米,DE=30厘米,FH=DC=DE+CE=70厘米,DH=DF+FH=(45+70)厘米答:点D到BC的距离为(45+70)厘米(2)连接AE,AE,EE,如图4所示由题意,得:AE=AE,EAE=60,AEE是等边三角形,EE=AE四边形ABCD是矩形,ADE=90在RtADE中,AD=90厘米,DE=30厘米,厘米,EE=30厘米答:E、E两点的距离是30厘米【点睛】本题考查
20、了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出DF的长度;(2)利用勾股定理求出AE的长度3、(1);(2)且a0;(3)a3【分析】(1)利用根的判别式得到不等式,解之即可;(2)利用根的判别式得到不等式,解之即可;(3)分a0和a0两种情况分别讨论即可【详解】解:(1)有实根,当a=0时,解得:x=;当a0时,解得:且a0,;(2)有两个不等实根,当a=0时,解得:x=,不符合;当a0时,解得:且a0,且a0;(3)若a0,则对称轴为直线x=,在y轴左侧,函数在(1,2)上单调递减,此时在(1,2)上没有实根;当a0时,对称轴
21、为直线x=,在y轴右侧,若函数在(1,2)上有且只有一个实根,则且,解得:a3【点睛】本题考查了二次函数与一元二次方程的关系,二次函数的图像和性质,解题的关键是结合图像求解4、乘;合【分析】(1)“千人分在北上下”,“北”的上面一个“千”,下面一个“人”,是“乘”,正是数学中常用字;(2)一人在“口”上边是“合”,合数的“合”是数学中常用字;即可得解【详解】解:(1)千人分在北上下打数学中常用字是“乘”;(2)1人立在口上边打数学中常用字是“合”【点睛】本题考查了数学常识,对数学概念的理解和灵活运用是解题的关键5、【生活观察】:(1)见解析表;(2)甲两次买菜的均价是元千克:乙两次买菜的均价是
22、元千克;【数学思考】:当时,当时,见解析;【知识迁移】:,见解析.【分析】(1)根据单价、质量与金额的关系,进行求解.(2)根据均价总金额总质量,进行求解.【数学思考】:根据均价总金额总质量,进行表示与大小比较.【知识迁移】:根据时间=路程速度,进行表示与大小比较.【详解】(1)根据单价、质量与金额的关系,可得甲的金额和乙的质量,如图表所示第二次:菜价元千克质量金额甲千克元乙千克元(2)根据均价总金额总质量,甲两次买菜的均价为元千克,乙两次买菜的均价为元千克.【数学思考】:,当时,当时,【知识迁移】:,;,又,【点睛】本题考查“单价=金额质量”,“时间=路程速度”公式的综合应用,以及代数式的值的大小判别.