《2022年最新北师大版七年级数学下册第六章概率初步同步测评试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年最新北师大版七年级数学下册第六章概率初步同步测评试卷(名师精选).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第六章概率初步同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随
2、机取出一个小正方体,只有一个面被涂色的概率为( )ABCD2、某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示折线统计图,则符合这一结果的试验最有可能的是()A不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球B任意写一个整数,它能被2整除C掷一枚正六面体的骰子,出现1点朝上D先后两次掷一枚质地均匀的硬币,两次都出现反面3、下列成语中,描述确定事件的个数是()守株待兔;塞翁失马;水中捞月;流水不腐;不期而至;张冠李戴;生老病死A5B4C3D24、现有4条线段,长度依次是2、5、7、8,从中任选三条,能组成三角形的概率是( )ABCD5、
3、将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是( ).ABCD6、下列说法正确的是()A“明天下雨的概率为99%”,则明天一定会下雨B“367人中至少有2人生日相同”是随机事件C抛掷10次硬币,7次正面朝上,则抛掷硬币正面朝上的概率为0.7D“抛掷一枚均匀的骰子,朝上的面点数为偶数”是随机事件7、下列说法中正确的是( )A一组数据2、3、3、5、5、6,这组数据的众数是3B袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1C为了解长沙市区全年水质情况,适合采用全面调查D画出一个三角形,其内角和
4、是180为必然事件8、下列语句中,表示不可能事件的是( )A绳锯木断B杀鸡取卵C钻木取火D水中捞月9、下列事件是必然事件的是()A任意选择某电视频道,它正在播新闻联播B温州今年元旦当天的最高气温为15C在装有白色和黑色的袋中摸球,摸出红球D不在同一直线上的三点确定一个圆10、一个质地均匀的小正方体,六个面分别标有数字“”,“”,“”“”,“”,“”,抛出小正方体后,观察朝上一面的数字,出现偶数的概率是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的袋中装有黄、白两种颜色的球共40个,这些球除颜色外都相同,小亮通过多次摸球试验后,发现摸到黄球的频
5、率稳定在0.35左右,则袋中白球可能有_个2、掷一枚质地均匀的硬币8次,其中3次正面朝上,5次反面朝上,现再掷一次,正面朝上的概率是 _3、转动如图所示的这些可以自由转动的转盘(转盘均被等分),当转盘停止转动后,根据“指针落在白色区域内”的可能性的大小,将转盘的序号按事件发生的可能性从小到大排列为_4、一个盒子里装有除颜色外都相同的1个红球,4个黄球把下列事件的序号填入下表的对应栏目中从盒子中随机摸出1个球,摸出的是黄球;从盒子中随机摸出1个球,摸出的是白球;从盒子中随机摸出2个球,至少有1个是黄球事件必然事件不可能事件随机事件序号_5、不透明袋子中装有1个红球和2个黄球,这些球除颜色外无其他
6、差别从袋子中随机摸出1个球,摸出红球的概率是 _ 三、解答题(5小题,每小题10分,共计50分)1、山西某高校为了弘扬女排精神,组建了女排社团,通过测量女同学的身高(单位:cm),并绘制了两幅不完整的统计图,请结合图中提供的信息,解答下列问题(1)填空:该排球社团一共有 名女同学,a (2)把频数分布直方图补充完整(3)随机抽取1名学生,估计这名学生身高高于160cm的概率2、袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别在看不到球的条件下,随机从袋子中摸出1个球(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一
7、样大吗?为了验证你的想法,动手摸一下吧!每名同学随机从袋子中摸出1个球,记下球的颜色,然后把球重新放回袋子并摇匀汇总全班同学摸球的结果并把结果填在下表中球的颜色黑球白球摸取次数比较表中记录的数字的大小,结果与你事先的判断一致吗?在上面的摸球活动中,“摸出黑球”和“摸出白球”是两个随机事件一次摸球可能发生“摸出黑球”,也可能发生“摸出白球”,事先不能确定哪个事件发生由于两种球的数量不等,所以“摸出黑球”与“摸出白球”的可能性的大小不一样,“摸出黑球”的可能性大于“摸出白球”的可能性你们的试验结果也是这样吗?3、在不透明的袋子里装有10个乒乓球,其中有2个是黄色的,3个是红色的,其余全是白色的,先
8、拿出每种颜色的乒乓球各一个(不放回),再任意拿出一个乒乓球是红色的概率是多少?4、我校开展垃圾分类网上知识竞赛,并从本校七年级随机抽取了部分学生的竞赛成绩进行整理、描述和分析(根据成绩共分A、B、C、D四个等级),其中获得A等级和C等级的人数相等相应的条形统计图和扇形统计图如下:根据以上信息,解答下列问题:(1)共抽取了 名学生;(2)补全条形统计图,并求出扇形统计图中B等级对应的圆心角的度数;(3)A等级中有4名同学是女生,学校计划从A等级的学生中抽取1名参加区级垃圾分类网上知识竞赛,则抽到女生的概率是多少?5、为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动,赛后随机抽取了部分学生
9、的成绩,按得分划分为A,B,C,DA等级(0x100),B等级(80x90),C等级(70x80),D等级(x70)四个等级,并绘制了如下不完整的统计表和统计图根据图表信息,回答下列问题:(1)表中a ;扇形统计图中,C等级所占的百分比是 ;D等级对应的扇形圆心角为 度;若全校共有1800名学生参加了此次知识竞赛活动,请估计成绩为A等级的学生共有 人(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率-参考答案-一、单选题1、B【分析】将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到
10、27个小立方体,其中一个面涂色的有6块,可求出相应的概率【详解】解:将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到33327(个),有6 个一面涂色的小立方体,所以,从27个小正方体中任意取1个,则取得的小正方体恰有一个面涂色的概率为,故选:B【点睛】本题考查了概率公式,列举出所有等可能出现的结果数和符合条件的结果数是解决问题的关键2、A【分析】根据频率图象可知某实验的频率约为0.33,依次求出每个事件的概率进行比较即可得到答案【详解】解:A、不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球的概率0.33,符合题意; B、任意写一个整数,它能2被整除的概
11、率为,不符合题意; C、掷一个质地均匀的正六面体骰子,出现1点朝上的概率为0.17,不符合题意;D、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率是,不符合题意; 故选:A【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率所求情况数与总情况数之比3、C【分析】根据个成语的意思,逐个分析判断是否为确定事件即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随
12、机事件【详解】解守株待兔,是随机事件;塞翁失马,是随机事件;水中捞月,是不可能事件,是确定事件;流水不腐,是确定事件;不期而至,是随机事件;张冠李戴,是随机事件;生老病死,是确定事件综上所述,是确定事件,共3个故选C【点睛】本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键4、A【分析】先找出从中任选三条的所有可能的结果,再根据三角形的三边关系定理找出能组成三角形的结果,然后利用概率公式即可得【详解】解:由题意,从这4条线段中任选三条共有4种结果,即、,由三角形的三边关系定理可知,能组成三角形的有2种结果,即和,则所求的概率为,故选:A【点睛】本题考查了求概率,熟练掌握等可能性下的概率计
13、算方法是解题关键5、C【分析】本题是一个由三步才能完成的事件,共有666=216种结果,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,找出勾股数的情况,因而得出是直角三角形三边长的概率即可【详解】本题是一个由三步才能完成的事件,共有666=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,因而a,b,c正好是直角三角形三边长的概率是故选:C【点睛】本题主要考查了等可能事件的概率,属于基础题,用到的知识点为:概
14、率等于所求情况数与总情况数之比;3,4,5为三角形三边的三角形是直角三角形6、D【分析】根据概率、随机事件和必然事件的定义逐项判断即可得【详解】解:A、“明天下雨的概率为99%”,则明天不一定会下雨,原说法错误;B、“367人中至少有2人生日相同”是必然事件,则原说法错误;C、抛掷硬币要么正面朝上,要么正面朝下,则抛掷硬币正面朝上的概率为,则原说法错误;D、“抛掷一枚均匀的骰子,朝上的面点数为偶数”是随机事件,说法正确;故选:D【点睛】本题考查了概率、随机事件和必然事件,掌握理解各概念是解题关键7、D【分析】根据统计调查、事件的发生可能性与概率的求解方法即可依次判断【详解】A. 一组数据2、3
15、、3、5、5、6,这组数据的众数是3和5,故错误;B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;D. 画出一个三角形,其内角和是180为必然事件,正确;故选D【点睛】此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解8、D【分析】根据不可能事件的定义:在一定条件下,一定不会发生的事件,进行逐一判断即可【详解】解:不可能事件是在一定条件下,一定不会发生,而A中的绳锯木断,B中的杀鸡取卵,C中的钻木取火都是可以发生,只有D水中捞月是不可能发生的,只有D选项是不可能事件,故选D【点睛】本题主要考查了
16、不可能事件,解题的关键在于能够熟知不可能事件的定义9、D【分析】由题意依据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】解:A. 任意选择某电视频道,它正在播新闻联播,是随机事件,选项不符合;B. 温州今年元旦当天的最高气温为15,是随机事件,选项不符合;C. 在装有白色和黑色的袋中摸球,摸出红球,是不可能事件,选项不符合;D. 不在同一直线上的三点确定一个圆,是必然事件,选项符合.故选:D.【点睛】本题考查确定事件和不确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随
17、机事件是指在一定条件下,可能发生也可能不发生的事件10、D【分析】用出现偶数朝上的结果数除以所有等可能的结果数即可得【详解】解:掷小正方体后共有6种等可能结果,其中朝上一面的数字出现偶数的有2、4、6这3种可能,朝上一面的数字出现偶数的概率是,故选:D【点睛】本题考查了概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数二、填空题1、26【分析】利用频率估计概率得到摸到白球的概率为1-0.35,然后根据概率公式计算即可【详解】解:设袋子中白球有x个,根据题意,得:1-0.35,解得:x26,即布袋中白球可能有26个,故答案为:26【点睛】本题考查了利用
18、频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率2、#【分析】直接利用概率的意义分析得出答案【详解】解:掷质地均匀硬币的试验,每次正面向上和向下的概率相同,再次掷出这枚硬币,正面朝上的概率是故答案为:【点睛】此题主要考查了概率的意义,正确把握概率的意义是解题关键3、【分析】指针落在白色区域内的可能性是:白色总面积,比较白色部分的面积即可【详解】解:指针落在白色区域内的可能性分别为:, 从小到大的顺序为:【点睛】此题主要考查了可能性大小的比较:只要总情况数目(面积
19、)相同,谁包含的情况数目(面积)多,谁的可能性就大;反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等4、 【分析】直接利用必然事件:一定发生的事件;不可能事件:一定不会发生的事件;随机事件:可能发生可能不发生的事件,来依次判断即可【详解】解:根据盒子里装有除颜色外都相同的1个红球,4个黄球,从盒子中随机摸出1个球,摸出的是黄球,属于随机事件;从盒子中随机摸出1个球,摸出的是白球,属于不可能事件;从盒子中随机摸出2个球,至少有1个是黄球,属于必然事件;故答案是:,【点睛】本题考查了必然事件、不可能事件、随机事件,解题的关键是掌握相应的概念进行判断5、【分析】先确定事件的所有等可能性,
20、再确定被求事件的等可能性,根据概率计算公式计算即可【详解】事件的所有等可能性有1+2=3种,摸出红球事件的等可能性有1种,摸出红球的概率是,故答案为:【点睛】本题考查了简单概率的计算,熟练掌握概率计算公式是解题的关键三、解答题1、(1)100,30;(2)见解析;(3)0.55【分析】(1)根据频数分布直方图中组的人数除以扇形统计图中组的所占百分比即可求得总人数,根据总人数减去组的人数即可求得组的人数,除以总人数即可求得的值;(2)根据(1)中的结论补全统计图即可;(3)根据身高高于160cm除以总人数即可求得随机抽取1名学生,估计这名学生身高高于160cm的概率【详解】解:(1)总人数为:;
21、组的人数为故答案为:(2)如图,(3)总人数为,身高高于160cm为随机抽取1名学生,估计这名学生身高高于160cm的概率为【点睛】本题考查了频数直方图和扇形统计图信息关联,简单概率计算,从统计图中获取信息是解题的关键2、(1)都有可能;(2)不一样大,黑球的可能性大;验证:30,15(答案不唯一);结果和事先判断一致,试验结果一致【分析】(1)根据随机事件的定义可知;(2)根据事件发生的可能性大小判断即可【详解】(1)都有可能;(2)不一样大,黑球的可能性大验证:答案不唯一,假设全班学生共45人,汇总全班同学摸球的结果并把结果填在下表中球的颜色黑球白球摸取次数3015根据等可能性的概率,试验
22、结果和事先判断一致;试验结果一致故答案为:30,15(答案不唯一)【点睛】本题考查了事件的可能性,简单概率的求法,掌握比较事件的可能性是解题的关键3、【分析】根据剩下7个小球拿一个的可能性有7种,其中红球的可能性是2种即可求解【详解】解:先拿出每种颜色的乒乓球各一个(不放回),则还剩下7个小球,其中红色的球2个,剩下7个小球拿一个的可能性有7种,其中红球的可能性是2种,再任意拿出一个乒乓球是红色的概率是 【点睛】本题主要考查了概率的计算,用到的知识点为:概率所求情况数与总情况数之比4、(1)40;(2)图见解析,135;(3)【分析】(1)用A等级的人数除以所占的百分比即可;(2)计算出D等级
23、的人数,用360乘以B等级所占的百分比即可;(3)用女生人数除以总人数即可得出抽到女生的概率【详解】解:(1)共抽取的学生数是:1025%40(名)故答案为:40(2)扇形统计图中B等级对应的圆心角的度数是360135条形统计图如图:D等级的人数=40-15-10-10=5(3)A等级中共有10人,其中有4名女生,抽到女生的概率是【点睛】本题考查了条形统计图、扇形统计图以及概率的知识用到的知识点为:概率所求情况数与总情况数之比5、(1)20,30%,42,450;(2)【分析】(1)由A等级的人数和所对应的圆心角的度数求出抽取的学生人数,即可解决问题;(2)画树状图,共有12种等可能的结果,甲
24、、乙两人至少有1人被选中的结果有10种,再由概率公式求解即可【详解】解:(1)抽取的学生人数为:1560(人),a601518720,C等级所占的百分比是1860100%30%,D等级对应的扇形圆心角为:36042,估计成绩为A等级的学生共有:18001560450(人),故答案为:20,30%,42,450;(2)95分以上的学生有4人,其中甲、乙两人来自同一班级,其他两人记为丙、丁,画树状图如图:共有12种等可能的结果,甲、乙两人至少有1人被选中的结果有10种,甲、乙两人至少有1人被选中的概率为【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率所求情况数与总情况数之比