《2022年精品解析京改版九年级数学下册第二十五章-概率的求法与应用课时练习试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《2022年精品解析京改版九年级数学下册第二十五章-概率的求法与应用课时练习试题(含答案及详细解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十五章 概率的求法与应用课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是()ABCD2、在“石头、剪子、布”的游戏中,
2、当你出“剪刀”时,对手与你打平的概率为()ABCD3、在抛掷一枚质地均匀的硬币的实验中,第100次抛掷时,反面朝上的概率是( )ABCD不确定4、由三个正方形彼此嵌套组成一个如图所示的图案,其中每个内层正方形的顶点都是其外层正方形边的中点将一个飞镖随机投掷到该图案上,则飞镖落在阴影区域的概率是( ) ABCD5、某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率表格如下,则符合这一结果的试验最有可能的是( ) 次数1002003004005006007008009001000频率0.600.300.500.360.420.380.410.390.400.40A掷一枚
3、质地均匀的骰子,向上面的点数是“5”B掷一枚一元的硬币,正面朝上C不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D三张扑克牌,分别是3、5、5,背面朝上洗匀后,随机抽出一张是56、将7个分别标有数字3,2,1,0,1,2,3的小球放到一个不透明的袋子里,它们大小相同,随机摸取一个小球将其标记的数字记为m,则使得二次函数yx23x+m2与x轴有交点,且关于x的分式方程有解的概率是()ABCD7、在一个不透明的袋中装有只有颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后再重复上述步骤;如表是实验中记录的部分统计数据
4、:摸球次数40506080100200摸到红球次数191013162040则袋中的红球可能有()A8个B6个C4个D2个8、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同从袋子中任意摸出1个球,摸到标号大于2的概率是( )ABCD9、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为().ABCD110、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用抽签的办法从 A 、B 、C 、D
5、四人中任选一人去打扫公共场地,选中 A 的概率是_2、对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数(件)501001502005008001000合格频数4288131176445724901合格频率0.840.880.870.880.890.910.90根据上表,估计任抽一件衬衣是合格品的概率是_3、为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“停课不停学”的要求,各地学校开展了远程网络教学,某校为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论小宁和小娟都参加了远程网络教学活动,请求出某一时间内两人恰好选择同
6、一种学习方式的概率为_4、某校准备从A,B两名女生和C,D两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的概率是 _5、在一个不透明袋子中,装有3个红球和一些白球,这些球除颜色外无其他差别,从袋中随机摸出一个球是红球的概率为,则袋中白球的个数是_三、解答题(5小题,每小题10分,共计50分)1、有四张大小、质地都相同的不透明卡片,上面分别标有数字1,2,3,4(背面完全相同),现将标有数字的一面朝下,洗匀后从中任意抽取一张,记下数字后放回洗匀,然后再从中任意抽取一张,请用画树状图或列表的方法,求两次抽取的卡片上的数字和等于5的概率2、口袋装有3只形状大小一
7、样的球,其中2个球是红色,1个球是白色,规定游戏者一次从口袋中摸出一个球,然后放回第二次再摸一个球,然后再放回甲两次摸到红球获胜,乙摸到一红一白或二白获胜,你认为游戏对双方公平吗?请说明理由3、在一次数学兴趣小组活动中,小李和小王两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字)游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于11,则小李获胜;若指针所指区域内两数和大于11,则小王获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止)(1)请用列表或画树状图的方法分别求出小李和小王获胜的概率;(2)这个
8、游戏公平吗?若不公平,请你设计一个公平的游戏规则4、某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决下面问题:(1)柑橘损坏的概率估计值为 ;(2)估计这批柑橘完好的质量为 千克;(3)如果公司希望销售这些柑橘能够获得不低于25000元的利润,那么在出售(已去掉损坏的柑橘)时,每千克柑橘大约定价为多少元比较合适?5、为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间根据调查结果,制作了两幅不完整的统计图
9、(图1,图2),请根据统计图中的信息回答下列问题: (1)本次调查的学生人数是_人;(2)图2中是_度,并将图1条形统计图补充完整;(3)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率-参考答案-一、单选题1、B【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:随机掷一枚质地均匀的硬币三次,根据树状图可知至少有两次正面朝上的事件次数为:4,总的情况为8次,故至少有两次正面朝上的事件概率是:故选:B【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出
10、树状图2、B【分析】根据题意画树状图展示所有3种等可能的结果数,再找出对手与你打平的结果数,然后根据概率公式求解即可【详解】解:画树状图为:共有3种可能的结果数,其中对手与你打平的结果数为1,所以对手与你打平的概率=.故选:B【点睛】本题考查列表法与树状图法求概率,注意掌握利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率3、B【分析】抛一枚质地均匀的硬币,有两种结果,正面或反面朝上,每种结果等可能出现,利用概率公式,即可求得答案【详解】解:抛掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,第10
11、0次再抛这枚硬币时,反面向上的概率是:故选:B【点睛】本题主要考查简单事件概率,掌握等可能事件的概率公式,是解题的关键.4、B【分析】设大正方形的边长为,求得空白区域的面积占整个面积的比,进而可得镖落在阴影区域的概率【详解】解:设大正方形的边长为,则中间正方形的边长为,小正方形的边长为,整个区域的面积为,空白区域的面积为则空白区域占,故镖落在空白区域的概率等于则镖落在阴影区域的概率= ,故选:B【点睛】此题考查了概率的有关计算,掌握概率的计算方法并求得空白区域所占的比重是解题的关键5、C【分析】根据利用频率估计概率得到实验的概率在左右,再分别计算出四个选项中的概率,然后进行对比判断即可【详解】
12、解:、掷一个质地均匀的骰子,向上的面点数是“5”的概率为:,不符合题意;B、抛一枚硬币,出现正面朝上的概率为,不符合题意;C、不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球的概率是,符合题意;D、三张扑克牌,分别是、,背面朝上洗均后,随机抽出一张是5的概率为,不符合题意故选:C【点睛】本题考查了利用频率估计概率:大数次重复实验时,事件发生的频率在某个固定位置左右波动,并且波动的幅度越来越小,根据这个稳定的频率的值,可以用估计概率,这个固定的近似值就是这个事件的概率,当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概
13、率6、B【分析】根据抛物线与x轴有交点,计算出,根据分式方程有解,计算出,再在中找出满足的数,利用概率公式求解【详解】解:与x轴有交点,则,解得:,有解,则,即,在中,满足且有:,共5个,有概率公式知概率为:,故选:B【点睛】本题考查了二次函数与坐标轴交点的问题、分式方程、概率,解题的关键是求出的取值范围后,确定满足条件的个数7、C【分析】首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可【详解】解:摸球200次红球出现了40次,摸到红球的概率约为,20个球中有白球204个,故选:C【点睛】本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键8、A
14、【分析】根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可【详解】解:总可能结果有4种,摸到标号大于2的结果有2种,从袋子中任意摸出1个球,摸到标号大于2的概率是故选A【点睛】本题考查了简单概率公式求概率,掌握概率公式是解题的关键概率=所求情况数与总情况数之比9、C【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率本题球的总数为1+2=3,红球的数目为1【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:13=故选:C【点睛】本题考查概率的求法:如果一
15、个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=10、C【分析】用3的倍数的个数除以数的总数即为所求的概率【详解】解:1到10的数字中是3的倍数的有3,6,9共3个,卡片上的数字是3的倍数的概率是故选:C【点睛】本题考查概率的求法用到的知识点为:概率所求情况数与总情况数之比二、填空题1、【分析】根据题干求出所有等可能的结果数,以及恰好选中A的情况数,再利用概率公式求解即可【详解】解:从A 、B 、C 、D 四人中,选一人去打扫公共场地,共4种情况,其中选中A的情况有一种,选中A去打扫公共场地的概率为P=,故答案为:【点睛】本题考查概率的求法:如果一
16、个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率为:P(A)=2、0.90【分析】由题意根据7批次衬衫从50件增加到1000件时,衬衣合格的频率趋近于0.90,即可估计衬衣合格的概率【详解】解:抽取件数为1000时,合格的频率趋近于0.90,任取一件衬衣是合格品的概率是0.90故答案为:0.90【点睛】本题考查利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率3、#【分析】用分别表示:在线阅读、在线听课、在线答疑、在线讨论,
17、再利用列表的方法求解学习方式中所有的等可能的结果数,再确定两人选择相同的学习方式的结果数,再利用概率公式可得答案.【详解】解:用分别表示:在线阅读、在线听课、在线答疑、在线讨论,列表如下: 由表格信息可得:所有的等可能的结果数有16种,而两人选择相同的学习分式的可能的结果数有4种,所以:某一时间内两人恰好选择同一种学习方式的概率为: 故答案为:【点睛】本题考查的是利用画树状图或列表的方法求解等可能事件的概率,熟练的列表得到所有的等可能的结果数是解本题的关键.4、【分析】先列表求解所有的等可能的结果数,再得到所选代表恰好为1名女生和1名男生的结果数,再利用概率公式进行计算即可.【详解】解:列表如
18、下: 所以:所有的可能的结果数有种,刚好是1名女生和1名男生的结果数有8种,所以所选代表恰好为1名女生和1名男生的概率是: 故答案为:【点睛】本题考查的是利用列表法或画树状图的方法求解等可能事件的概率,掌握“画树状图或列表的方法”是解本题的关键.5、6【分析】随机摸出一个球是红球的概率是,可以得到球的总个数,进而得出白球的个数【详解】解:记摸出一个球是红球为事件白球有个故答案为:【点睛】本题考察了概率的定义解题的关键与难点在于理解概率的定义,求出球的总数三、解答题1、【分析】根据题意列出图表得出所有等可能的情况数,找出两次数字和为5的情况数,然后根据概率公式即可得出答案【详解】解:根据题意画图
19、如下:共有16种的可能的情况数,其中两次数字和为5的有4种,则两次数字和为5的概率实数【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比2、这个游戏对双方是不公平的,理由见解析【分析】首先依据题先用树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可【详解】解:这个游戏对双方是不公平的如图,一共有9种情况,两次摸到红球的有4种,摸到一红一白或二白的有5种,P(两个红球)=;P(一红一白)
20、=,概率不相同,那么游戏不公平【点睛】本题考查的是游戏的公平性解决本题需要正确画出树状图进行解题用到的知识点为:概率=所求情况数与总情况数之比3、(1)小李获胜的概率是,小王获胜的概率是;(2)不公平,见详解.【分析】(1)根据题意画出树状图,得出所有等可能的情况数,找出符合条件的情况数,再根据概率公式即可得出答案;(2)由题意根据各自得出的概率得出游戏不公平,再根据概率公式直接修改为两人获胜的概率相等即可【详解】解:(1)根据题意画图如下:由上图可知,共有12种等可能的情况数,其中指针所指区规内两数和小于11有3种,两数和大于11有6种,则小李获胜的概率是,小王获胜的概率是;(2)由(1)知
21、,小李获胜的概率是,小王获胜的概率是,所以游戏不公平;游戏规则:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和不大于11,则小李获胜;若指针所指区域内两数和大于11,则小王获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止)【点睛】本题考查的是游戏公平性的判断注意掌握判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比4、(1)0.1;(2)9000;(3)每千克柑橘大约定价为5元比较合适【分析】(1)根据图形即可得出柑橘损坏的概率; (2)用整体1减去柑橘损坏的概率即可出柑橘完好的概率,再乘以10000千克
22、即可解题;(3)先设每千克柑橘大约定价为x元比较合适,根据题意列出方程,解方程即可解答【详解】解:(1)由图可知,柑橘损坏概率估计值为0.1故答案为:0.1;(2)1-0.1=0.9,100000.9=9000(千克)故答案:9000;(3)设每千克柑橘大约定价为x元比较合适,由题意得,9000x=25000+210000解得:x=5答:每千克柑橘大约定价为5元比较合适【点睛】本题考查频率估计概率,解题关键是在图中找到必要信息,求出柑橘损坏的概率5、(1)40;(2)54;补图见解析;(3)【分析】(1)由自主学习的时间是1小时的有12人,占30%,即可求得本次调查的学生人数;(2)用360乘
23、以自主学习的时间是0.5小时的人数所占的百分比即可求出,再用总人数乘以自主学习的时间是1.5小时的人数所占的百分比,即可得出答案,从而补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中A的情况,再利用概率公式求解即可求得答案【详解】解:(1)自主学习的时间是1小时的有12人,占30%,则本次调查的学生人数是1230%=40(人),故答案为:40;(2),故答案为:54;自主学习的时间是0.5小时的人数为4035%=14;补充图形如图: (3)画树状图得:共有12种等可能的结果,选中小亮A的有6种可能,P(A)=【点睛】本题考查的是用列表法或画树状图法求概率与扇形统计图、条形统计图的知识列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比