《2022年京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专项训练试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专项训练试卷(无超纲).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第四章一元一次不等式和一元一次不等式组专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不等式组的最小整数解是( )A5B0CD2、若关于x的分式方程+1有整数解,且关于y的不等式组恰
2、有2个整数解,则所有满足条件的整数a的值之积是()A0B24C72D123、对有理数a,b定义运算:ab=ma +nb,其中m,n是常数,如果34=2,582,那么n的取值范围是( )AnBn2Dn2可得一个关于的一元一次不等式,解不等式即可得【详解】解:由题意得:,解得,由582得:,将代入得:,解得,故选:A【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键4、C【解析】【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x为整数【详解】解:设每组预定的学生数为x人,由题意得,解
3、得是正整数故选:C【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键5、A【解析】【分析】根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可【详解】解:根据图象可得,数轴所表示的不等式组的解集为:,A选项解集为:,符合题意;B选项解集为:,不符合题意;C选项解集为:,不符合题意;D选项解集为:,不符合题意;故选:A【点睛】题目主要考查不等式组的解集在数轴上的表示及解集的确定,理解不等式组解集的确定方法是解题关键6、C【解析】【分析】由题意直接根据已知解集得到,即可
4、确定出的范围【详解】解:不等式的解集为,解得:故选:C【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解答本题的关键7、C【解析】【分析】先求出32x3(k2)的解为x,从而推出,整理不等式组可得整理得:,根据不等式组无解得到k1,则1k3,再由整数k和是整数进行求解即可【详解】解:解方程32x3(k2)得x,方程的解为非负整数,0,把整理得:,由不等式组无解,得到k1,1k3,即整数k0,1,2,3,是整数,k1,3,综上,k1,3,则符合条件的整数k的值的和为4故选C【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求
5、解8、D【解析】【分析】根据不等式的基本性质进行逐一判断即可得解【详解】A.不等式两边同时减b得,故选项A错误;B.不等式两边同时减2得,故选项B错误;C.不等式两边同时乘2得,故选项C错误;D.不等式两边同时乘得,不等式两边再同时加1得,故选项D准确故选:D【点睛】本题主要考查了不等式的基本性质,注意不等式两边都加上或减去一个数或整式,不等号方向不变,不等式两边同时乘或除以一个正数,不等号的方向不变,不等式两边同时乘或除以一个负数,要改变不等号的方向9、B【解析】【分析】在数轴上把不等式组的解集表示出来,即可选项答案【详解】解:不等式组的解集在数轴上应表示为:故选:B【点睛】本题考查了在数轴
6、上表示不等式组的解集等知识点,注意:在数轴上表示不等式组的解集时,包括该点时用实心点,不包括该点时用空心点10、D【解析】【分析】先求出不等式的解集,再根据解集在数轴上的表示方法表示即可【详解】解:,解得:,在数轴上表示解集为:,故选:D【点睛】题目主要考查了求不等式的解集,在数轴上表示不等式的解集,掌握数轴上表示不等式解集的方法是解题的关键二、填空题1、28【解析】【分析】根据题意可以列出相应的不等式,又根据一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在读外语,可知该班学生一定是2、4、7的倍数,从而可以解答本题【详解】解:设这个班有x人,由题意可得:,解得,x56,又一半学生在
7、学数学,四分之一的学生在学音乐,七分之一的学生在读外语,该班学生一定是2、4、7的倍数,x=28,故答案为:28【点睛】本题考查一元一次不等式的应用,解答此类问题的关键是列出相应的不等式,注意要联系实际情况和题目中的要求2、19【解析】【分析】设小明答对x道题,则答错(或不答)(25-x)道题,利用总得分=4答对题目数-2答错(或不答)题目数,结合小明参加本次竞赛得分要超过60分,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论【详解】解:设小明答对x道题,则答错(或不答)(25-x)道题,依题意得:4x-2(25-x)60,解得:x又x为正整数,x可以取的最小值为19故答案
8、为:19【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键3、【解析】【分析】分别求得不等式的解集,然后取公共解即可【详解】解:解不等式得:解不等式得:所以不等式的解集为:故答案为【点睛】此题考查了不等式组的求解,解题的关键是求解不等式的解集,然后取公共解4、【解析】【分析】根据题意列出不等式,依据解不等式得基本步骤求解可得【详解】解:由题意得,解得,故答案为:【点睛】本题主要考查解不等式,熟练掌握解一元一次不等式的基本步骤是解题的关键5、【解析】【分析】根据解一元一次不等式组的方法求解即可【详解】解:由不等式得:由不等式得:不等式组的解集为故答案
9、为【点睛】本题考查了求解一元一次不等式组,掌握一元一次不等式组的解法是解题的关键三、解答题1、(1)x;(2)1x3【解析】【分析】(1)去括号,移项合并,系数化为1即可求解;(2)分别求出各不等式的解集,再求出其公共解集即可【详解】解:(1)去括号得,x-16x+18,移项合并同类项得:5x-19,系数化为1得:x;(2),由得,x1,由得,x3,故不等式组的解集为:1x3【点睛】本题考查了解一元一次不等式,以及一元一次不等式组,熟练掌握求不等式解集的步骤是解答此题的关键2、(1)483;1126;(2)143或247【解析】【分析】(1)根据材料定义直接计算即可;(2)首先结合定义求出,然
10、后根据“能被26整除”列出表达式,并分离整数部分,对剩余部分结合数字的性质进行分类讨论求解即可【详解】解:(1);故答案为:483;1126;(2)根据“潜力数”的定义知为三位数,能被26整除,应为整数,分离整数部分,整理得:,由题意知,均为整数,为整数,则满足为整数即可,26为偶数,应满足为偶数,又由题意,为奇数,为偶数,12为偶数,要使得为偶数,则应满足为奇数,可取的数为:1;3;5;7,由“潜力数”定义知的百位数字不超过4,可取的数为:0;1;2;3,分类讨论如下:当,时,此时,任意奇数均能满足为整数,即满足能被26整除,此时,;当,时,要使得为整数,即为整数,不妨设,其中为整数,则,由
11、于为整数,则此时不可能为整数,与为奇数矛盾,假设不成立,排除;同理,当,时,;当,时,;此时,以上两种情况均不存在奇数使得为整数,排除;当,时,当,时,此时,不存在奇数使得为整数,排除;当,时,此时,任意奇数均能满足为整数,满足题意,此时,;当,时,此时,不存在奇数使得为整数,排除;当,时,当,时,当,时,当,时,此时,以上四种情况均不存在奇数使得为整数,排除;当,时,当,时,当,时,当,时,此时,以上四种情况均不存在奇数使得为整数,排除;综上分析,有,或,时,满足能被26整除,且为奇数,的值为143或247【点睛】本题考查因式分解和列举分类讨论,掌握讨论整除相关问题时,常用分离整数的方法,并
12、熟练运用分类讨论的方法是解题关键3、(1) ; ;(2)甲旅行社的总费用1575元,乙旅行社的总费用1600元;(3)当 时,两家旅行社的费用一样;当 时,乙旅行社的花费更少;当 时,甲旅行社的花费更少【解析】【分析】(1)根据题意分别列出代数式,表示出两家旅行社的总费用,即可求解;(2)当学生人数为20人时,分别计算甲乙两个旅行社的总费用,即可求解;(3)分三种情况讨论,即可求解【详解】解:(1)甲旅行社的总费用: 元,乙旅行社的总费用: 元;(2)当学生人数为20人时,甲旅行社的总费用:元,乙旅行社的总费用: 元;(3)当 ,即 时,两家旅行社的费用一样;当 ,即 时,乙旅行社的花费更少;
13、当 ,即 时,甲旅行社的花费更少【点睛】本题主要考查了列代数式,一元一次方程和一元一次不等式的应用,明确题意,准确得到数量关系是解题的关键4、【解析】【分析】分别求出两个不等式的解集,然后取公共解集即可得出结论【详解】解不等式得:解不等式得:不等式组的解集为:【点睛】此题考查的是解不等式组,掌握不等式的解法和公共解集的取法是解题关键5、不等式组的解集为,不等式组的整数解为3【解析】【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可【详解】解:解不等式得:,解不等式得:,不等式组的解集为,不等式组的整数解为3【点睛】本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法