《2022年最新精品解析北师大版七年级数学下册第五章生活中的轴对称难点解析试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《2022年最新精品解析北师大版七年级数学下册第五章生活中的轴对称难点解析试卷(无超纲带解析).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章生活中的轴对称难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线MN是四边形MANB的对称轴,点P在MN上则下列结论错误的是( )AAMBMBAPBNCANMBNMDM
2、APMBP2、下列图形中,是轴对称图形的是( )ABCD3、下列交通标志中,是轴对称图形的是( )ABCD4、如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是( )ABCD5、在一些美术字中,有的汉字是轴对称图形下面4个汉字中,可以看作是轴对称图形的是()A吉B祥C如D意6、如图1,有一张长、宽分别为12和8的长方形纸片,将它对折后再对折,得到图2,然后沿图2中的虚线剪开,得到两部分,其中一部分展开后的平面图形(图3)可以是()ABCD7、如图,将一张长方形纸带沿EF折叠,点C、D的对应点分别为C、D若DEF,用含的式子可以将CFG表示为()A2B90+C180D18028、现实世界中
3、,对称现象无处不在,中国的方块字中有些也具有对称性下列汉字是轴对称图形的是( )A喜B欢C数D学9、下列图标中是轴对称图形的是( )ABCD10、如图,点D是FAB内的定点且AD=2,若点C、E分别是射线AF、AB上异于点A的动点,且CDE周长的最小值是2时,FAB的度数是()A30B45C60D90第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,点、分别为边、上的点,连接,将沿翻折得到,使若,则的大小为_2、如图,AC平分DCB,CBCD,DA的延长线交BC于点E,若DAC125,则BAE的度数为 _3、成轴对称的两个图形的主要性质是:(1)成轴对称的两个
4、图形是_(2)如果两个图形关于某条直线对称,那么对称轴是任何一对_的垂直平分线4、如图,把一张长方形纸片沿折叠,点D与点C分别落在点和点的位置上,与的交点为G,若,则为_度5、如图,把一张长方形纸片ABCD的一角沿AE折叠,点D的对应点落在BAC的内部,若CAE=2,且=15,则DAE的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ADBE,DAC10,AE是BAC的外角MAC的平分线,BF平分ABC交AE于点F,求AFB的度数2、(1)在图中画出与ABC关于直线l成轴对称的A1B1C1;(2)ABC的面积为 ;(3)在直线l上找一点P(在答题纸的图中标出点P),
5、使PB+PC的长最短3、如图所示的每幅图形中的两个图案是轴对称的吗?如果是,指出它们的对称轴,并找出一对对称点4、如图,已知线段a,求作以a为底以为高的等腰三角形,这个等腰三角形有什么特征?5、如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3)(1)求出ABC的面积为 (2)画出ABC关于x轴对称的图形A1B1C1(3)已知P为y轴上一点,若ABP的面积为4,求点P的坐标-参考答案-一、单选题1、B【分析】根据轴对称的性质可以得到AM=BM,ANM=BNM,MAP=MBP,由此即可得到答案【详解】解:直线MN是四边形MANB的对称轴,AM=BM,ANM=BNM,MAP=
6、MBP,故A、C、D选项不符合题意;根据现有条件,无法推出AP=BN,故B选项符合题意;故选B【点睛】本题主要考查了轴对称图形的性质,解题的关键在于能够熟练掌握轴对称图形的性质:成轴对称图形的两个图形全等,如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线2、A【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键3、C【分析】根据轴对
7、称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判断即可【详解】解:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误;故选C【点睛】本题考查了轴对称图形的知识,属于基础题,掌握轴对称的定义是关键4、A【分析】根据剪下的图形为等腰直角三角形,展开后为正方形,可知剪去的仍为正方形,由此即知答案【详解】由题意知,剪下的图形为等腰直角三角形,展开后为正方形,所以剪去的为正方形,原图为正方形,其还原的过程如下:故选:A【点睛】本题考查了图形的折叠及裁剪,关键是根据折叠
8、后裁剪的过程还原,对学生的想象能力有更高的要求5、A【分析】根据轴对称的定义去判断即可【详解】吉是轴对称图形,A符合题意;祥不是轴对称图形,B不符合题意;如不是轴对称图形,C不符合题意;意不是轴对称图形,D不符合题意;故选A【点睛】本题考查了轴对称图形,熟练掌握轴对称图形的定义即一个图形沿着某条直线折叠,直线两旁的图形能完全重合,是解题的关键6、B【分析】由剪去的三角形与展开后的平面图形中的三角形是全等三角形,观察形成的图案是否符合要求判断即可【详解】解:图3中,图不符合题意,图中的4个三角形与图2中剪去的三角形不全等故符合题意,故选:B【点睛】本题考查的是轴对称的性质,全等三角形的性质,动手
9、实践是解此类题的关键.7、D【分析】由平行线的性质得,由折叠的性质得,计算即可得出答案【详解】四边形ABCD是矩形,长方形纸带沿EF折叠,故选:D【点睛】本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键8、A【分析】利用轴对称图形的概念可得答案【详解】解:A、是轴对称图形,故此选项合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形9、B【详解】解:选项A中的图形不是
10、轴对称图形,故A不符合题意;选项B中的图形是轴对称图形,故B符合题意;选项C中的图形不是轴对称图形,故C不符合题意;选项D中的图形不是轴对称图形,故D不符合题意;故选B【点睛】本题考查的是轴对称图形的识别,轴对称图形的概念:把一个图形沿某条直线对折,对折后直线两旁的部分能够完全重合;掌握“轴对称图形的概念”是解本题的关键.10、A【分析】作D点分别关于AF、AB的对称点G、H,连接GH分别交AF、AB于C、E,利用轴对称的性质得AG=AD=AH=2,利用两点之间线段最短判断此时CDE周长最小为DC+DE+CE=GH=2,可得AGH是等边三角形,进而可得FAB的度数【详解】解:如图,作D点分别关
11、于AF、AB的对称点G、H,连接GH分别交AF、AB于C、E,连接DC,DE,此时CDE周长最小为DC+DE+CE=GH=2,根据轴对称的性质,得AG=AD=AH=2,DAF=GAF,DAB=HAB,AG=AH=GH=2,AGH是等边三角形,GAH=60,FAB=GAH=30,故选:A【点睛】本题考查了轴对称-最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题二、填空题1、30【分析】由 得出,由折叠性质可知,再根据三角形外角性质求出【详解】解:如图,设 交 于点 ,由折叠性质可知,故答案为:【点睛】本题主要考查了平行线的性质,三角形外角的性质,熟练掌握三角形的外角等于
12、与它不相邻的两个内角的和是解题的关键2、70【分析】先根据角平分线的定义得到DCA=BCA,即可利用SAS证明DCABCA得到BAC=DAC=125,由CAE=180-DAC=55,则BAE=BAC-CAE=70【详解】解:AC平分DCB,DCA=BCA,又CB=CD,CA=CA,DCABCA(SAS),BAC=DAC=125,CAE=180-DAC=55,BAE=BAC-CAE=70,故答案为:70【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件3、全等的 对应点所连线段 【分析】根据轴对称的性质:成轴对称的两个图形全等,如果
13、两个图形成轴对称,那么对称轴是对应点的垂直平分线,进行求解即可【详解】解:(1)成轴对称的两个图形是全等的;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线故答案为:全等的,对应点所连线段【点睛】本题主要考查了轴对称图形的性质,解题的关键在于能够熟练掌握相关知识进行求解4、【分析】由折叠的性质可以得,从而求出,再由平行线的性质得到【详解】解:由折叠的性质可知, ,EFG=55,四边形ABCD是长方形ADBC,DE,故答案为:70【点睛】本题主要考查了折叠的性质,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解5、【分析】由折叠的性质可知,再根据长方形的
14、性质可知,结合题意整理即可求出的大小,从而即可求出的大小【详解】根据折叠的性质可知,由长方形的性质可知,即,故答案为:【点睛】本题考查矩形的性质,折叠的性质利用数形结合的思想是解答本题的关键三、解答题1、AFB40【分析】由题意易得ADC90,ACB80,然后可得,进而根据三角形外角的性质可求解【详解】解:ADBE,ADC90,DAC10,ACB90DAC901080,AE是MAC的平分线,BF平分ABC,又MAEABF+AFB,MACABC+ACB,AFBMAEABF【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键2、(1)作图见解析
15、;(2);(3)作图见解析【分析】(1)分别确定关于的对称点 再顺次连接即可;(2)利用长方形的面积减去周围三个三角形的面积即可得到答案;(3)由关于对称,连接 交于点 从而可得答案.【详解】解:(1)如图,是所求作的三角形,(2) 故答案为: (3)如图,点即为所求作的点,【点睛】本题考查的是轴对称的作图,利用轴对称确定两条线段的和最小,利用割补法求解图形的面积,掌握“轴对称的性质”是解题的关键.3、第(1)(3)是轴对称图形,对称轴和对称点见解析【分析】根据轴对称图形的定义确定是轴对称图形,连接两对对应点,然后作经过两对对应点连线中点的直线即可【详解】解:第(1)(3)是轴对称图形,(2)
16、不是轴对称图形,点A、B是一对对称点,直线l是对称轴,如图(1)所示;点C、D是一对对称点,直线m是对称轴,如图(3)所示【点睛】本题考查了轴对称图形,以及轴对称图形的性质,主要考查了对称轴的确定方法,是基础题,需熟记注意:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形4、见解析,这个等腰三角形是等腰直角三角形【分析】作射线,在射线上截取,作线段的垂直平分线,交于,在射线上截取,连接,即为所求【详解】解:如图,即为所求,,这个等腰三角形是等腰直角三角形【点睛】本题考查作图复杂作图,等腰三角形的性质,解题的关键是理解题意,灵活运用所学知识解决问题5、(1)4;(2
17、)A1B1C1为所求作的三角形,画图见详解;(3)点P的坐标为(0,5)或(0,-3)【分析】(1)利用割补法求ABC面积,SABC=S梯形AODC-SABO-SCDB代入计算即可;(2)利用关于x轴对称,横坐标不变,纵坐标变为相反数,先求出A、B、C对称点坐标A1(0,-1),B1(2,0),C1(4,-3)然后描点A1(0,-1),B1(2,0),C1(4,-3)再顺次连结线段A1B1,B1C1C1A1即可;(3)点P在y轴上,根据三角形面积先求出底AP的长,在分两种情况点P在点A的上方与下方,求出点P的坐标即可【详解】解:(1)过点C作CDx轴于D,A(0,1),B(2,0),C(4,3
18、),AO=1,OB=2,OD=4,CD=3,BD=OD-OB=4-2=2,SABC=S梯形AODC-SABO-SCDB=,=,=,=4,故答案为4;(2)ABC关于x轴对称的图形A1B1C1,A(0,1),B(2,0),C(4,3)A1(0,-1),B1(2,0),C1(4,-3)描点:A1(0,-1),B1(2,0),C1(4,-3)顺次连结A1B1,B1C1C1A1则A1B1C1为所求作的三角形;(3)点P在y轴上,以AP为底,以OB为高,SABP=,设点P的坐标为(0,n),当点P在点A下方,1-n=4,解得n=-3,当点P在点A上方, n-1=4,解得n=5,ABP的面积为4,点P的坐标为(0,5)或(0,-3)【点睛】本题考查割补法求三角形面积,用描点法化轴对称图形方法,根据三角形面积建立AP的方程,利用分类讨论思想求出点P坐标是解题关键