2022年浙教版初中数学七年级下册第四章因式分解章节测试试卷(浙教版).docx

上传人:知****量 文档编号:28159896 上传时间:2022-07-26 格式:DOCX 页数:19 大小:198.51KB
返回 下载 相关 举报
2022年浙教版初中数学七年级下册第四章因式分解章节测试试卷(浙教版).docx_第1页
第1页 / 共19页
2022年浙教版初中数学七年级下册第四章因式分解章节测试试卷(浙教版).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022年浙教版初中数学七年级下册第四章因式分解章节测试试卷(浙教版).docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解章节测试试卷(浙教版).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第四章因式分解章节测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式中,不能用完全平方公式分解因式的是()A.x2+2x+1B.16x2+1C.a2+4ab+4b2D.2、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)3、下列各式中与b2a2相等的是()A.(ba)2B.(a+b)(ab)C.(a+b)(a+b)D.(a+b)(ab)4、已知,那么的值为(

2、)A.3B.6C.D.5、把多项式a39a分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(a+3)(a3)6、下列多项式:;.能用公式法分解因式的是( )A.B.C.D.7、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:,分别对应下列六个字:勤,博,奋,学,自,主,现将因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主8、将边长为m的三个正方形纸片按如图1所示摆放并构造成边长为n的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m和n的长方形时,所得

3、长方形的面积为35.则图2中长方形的周长是()A.24B.26C.28D.309、把多项式x2+ax+b分解因式,得(x+3)(x4),则a,b的值分别是()A.a1,b12B.a1,b12C.a1,b12D.a1,b1210、下列各式从左到右的变形中,属于因式分解的是( )A.6x9y33(2x3y)B.x21(x1)2C.(xy)2x22xyy2D.2x222(x1)(x1)11、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2)C.4m2+n2(2m+n)(2mn)D.12、下列各式由左到右的变形中,属于因式分解的是( ).A.B

4、.C.D.13、下列式子的变形是因式分解的是( )A.B.C.D.14、若多项式x2mx+n可因式分解为(x+3)(x4).其中m,n均为整数,则mn的值是( )A.13B.11C.9D.715、把多项式x39x分解因式,正确的结果是( )A.x(x29)B.x(x3)(x3)C.x(x3)2D.x(3x)(3x)二、填空题(10小题,每小题4分,共计40分)1、若多项式9x2+kxy+4y2能用完全平方公式进行因式分解,则k_2、分解因式:_3、分解因式:2x3+12x2y+18xy2_4、因式分解:_5、若,则_6、因式分解:2a2-4a-6=_7、分解因式:9a2+b2_8、若,则_9、

5、若ab0,则a2b2_0(填“”,“”或“”)10、若,则a2bab2_三、解答题(3小题,每小题5分,共计15分)1、因式分解(1)3a3+6a2b3ab2;(2)4a2(xy)+9b2(yx);(3)a48a2b2+16b42、把下面各式分解因式:(1)x24xy4y2;(2)3a2123、分解因式:-参考答案-一、单选题1、B【分析】根据完全平方公式的结构特征逐项进行判断即可.【详解】解:A.x2+2x+1(x+1)2,因此选项A不符合题意;B.16x2+1在实数范围内不能进行因式分解,因此选项B符合题意;C.a2+4ab+4b2(a+2b)2,因此选项C不符合题意;D.x2x+(x)2

6、,因此选项D不符合题意;故选:B.【点睛】此题考查了用完全平方公式进行因式分解,熟练掌握完全平方公式是解题的关键.2、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解

7、题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.3、C【分析】根据平方差公式直接把b2a2分解即可.【详解】解:b2a2(ba)(b+a),故选:C.【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式.平方差公式:a2-b2=(a+b)(a-b).4、D【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.5、D【分析】先用提公因式法,再用平方差公式即可完成.【详解】a39aa(a29)a(a+3)

8、(a3).故选:D.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.6、C【分析】根据公式法的特点即可分别求解.【详解】不能用公式法因式分解;,可以用公式法因式分解;不能用公式法因式分解;=,能用公式法因式分解;=,能用公式法因式分解.能用公式法分解因式的是故选C.【点睛】此题主要考查因式分解,解题的关键是熟知乘方公式的特点.7、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结

9、合已知即可求解.【详解】解:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),由已知可得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.8、A【分析】由题意:按如图1所示摆放并构造成边长为n的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m和n的长方形时,所得长方形的面积为35,列出方程组,求出3m=7,n=5,即可解决问题.【详解】依题意,由图1可得,由图2可得,即解得或者(舍)时,则图2中长方形的周长是.故选A.【

10、点睛】本题考查了利用因式分解解方程,找准等量关系,列出方程是解题的关键.9、A【分析】首先利用多项式乘法将原式展开,进而得出a,b的值,即可得出答案.【详解】解:多项式x2+ax+b分解因式的结果为(x+3)(x-4),x2+ax+b=(x+3)(x-4)=x2-x-12,故a=-1,b=-12,故选:A.【点睛】此题主要考查了多项式乘法,正确利用乘法公式用将原式展开是解题关键.10、D【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】解:A、6x+9y+3=3(2x+3y+1),故此选项错误;B、x2-1=(x+1)(x-1),故此选项错误;C、(

11、x+y)2=x2+2xy+y2,是整式乘法运算,不是因式分解,故此选项错误;D、2x2-2=2(x-1)(x+1),属于因式分解,故此选项正确.故选:D.【点睛】本题考查的是因式分解的意义,正确掌握因式分解的定义是解题关键.11、C【分析】根据因式分解的各种方法逐个判断即可.【详解】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.故本选项符合题意;D.,所以,故本选项不符合题意;故选:C.【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.12、C【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A、是整式的乘法,故A不符合;B、没把一

12、个多项式转化成几个整式积,故B不符合;C、把一个多项式转化成几个整式积,故C符合;D、没把一个多项式转化成几个整式积,故D不符合;故选:C.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积.13、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,由此结合选项即可作出判断.【详解】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、是因式分解,故本选项正确;故正确的选项为:D【点睛】本题的关键是理解因式分解的定

13、义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,属于基础题.14、A【分析】根据多项式与多项式的乘法法则化简(x+3)(x4),再与式x2mx+n比较求出m,n的值,代入mn计算即可.【详解】解:(x+3)(x4)=x2-4x+3x-12=x2-x-12,x2mx+n= x2-x-12,m=1,n=-12,mn=1+12=13.故选A.【点睛】本题考查了因式分解,以及多项式与多项式的乘法计算,熟练掌握因式分解与乘法运算是互为逆运算的关系是解答本题的关键.15、B【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:x39xx(x29)x(x3)(x3).故

14、选:B.【点睛】本题考查了提公因式和公式法分解因式,熟练掌握平方差公式是解题的关键.二、填空题1、12.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:9x2+kxy+4y2(3x)2+kxy +(2y)2,kxy23x2y12xy,解得k12.故答案为:12.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.2、【分析】先提出公因式 ,再利用平方差公式进行因式分解即可.【详解】解:,故答案为:.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法提公因式法、公式法、

15、十字相乘法、分组分解法,还要注意分解彻底,是解题的关键.3、2x(x+3y)2【分析】首先提取公因式2x,再利用完全平方公式分解因式得出答案.【详解】解:原式2x(x2+6xy+9y2)2x(x+3y)2.故答案为:2x(x+3y)2.【点睛】此题考查的是因式分解,掌握提公因式法和公式法是解题的关键.4、【分析】根据因式分解的定义,观察该多项式存在公因式,故.【详解】解:.故答案为:.【点睛】本题主要考查用提公因式法进行因式分解,解题的关键是熟练掌握提取公因式法.5、15【分析】将原式首先提取公因式xy,进而分解因式,将已知代入求出即可.【详解】解:x2y5,xy3, .故答案为:15.【点睛

16、】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.6、2(a-3)(a+1)a+1)(a-3)【分析】提取公因式2,再用十字相乘法分解因式即可.【详解】解:2a24a62(a22a3)2(a-3)(a+1)故答案为:2(a-3)(a+1)【点睛】本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.7、 (b+3a)(b-3a)【分析】原式利用平方差公式分解即可.【详解】解:-9a2+b2= b2-9a2=(b+3a)(b-3a).故

17、答案为:(b+3a)(b-3a)【点睛】本题考查了运用平方差公式分解因式,熟练掌握平方差公式的结构特征是解本题的关键.8、2022【分析】根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.【详解】故填“2022”.【点睛】本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.9、【分析】将a2-b2因式分解为(a+b)(a-b),再讨论正负,和积的正负,得出结果.【详解】解:ab0,a+b0,a-b0,a2-b2=(a+b)(a-b)0.故答案为:.【点睛】本题考查了因式分解,解题的关键是先把整式a2-b2因式分解,再利用ab0得

18、到a-b和a+b的正负,利用负负得正判断大小.10、1【分析】直接提取公因式ab,进而分解因式,把已知数据代入得出答案.【详解】解:ab,ab2,a2bab2ab(ab)21.故答案为:1.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.三、解答题1、(1)3a(ab)2;(2)(xy)(2a+3b)(2a3b);(3)(a+2b)2(a2b)2【分析】(1)直接提取公因式3a,再利用完全平方公式分解因式得出答案;(2)直接提取公因式xy,再利用平方差公式分解因式即可;(3)直接利用完全平方公式分解因式,再利用平方差公式分解因式得出答案.【详解】解:(1)原式3a(a22

19、ab+b2)3a(ab)2;(2)原式(xy)(4a29b2)(xy)(2a+3b)(2a3b);(3)原式(a24b2)2(a+2b)(a2b)2(a+2b)2(a2b)2.【点睛】本题主要考查提公因式法因式分解以及公式法因式分解,积的乘方的逆运算,熟知平方差公式以及完全平方公式的结构特点是解题的关键.2、(1)(x2y)2;(2)3(a+2)(a2).【分析】(1)直接用公式法分解即可;(2)先提公因式,再利用平方差公式分解.【详解】解:(1)x24xy4y2(x2y)2;(2)3a2123(a24)3(a+2)(a2).【点睛】本题考查利用公式法和提公因式法分解因式,一般先提公因式,再观察能否用公式法分解因式,公式法是利用完全平方公式和平方差公式.3、【分析】利用平方差公式因式分解即可【详解】原式 , , , , 【点睛】本题考查了因式分解-运用公式法,熟练掌握平方差公式是解题关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁