2022年最新沪科版九年级数学下册第24章圆重点解析试卷(无超纲).docx

上传人:知****量 文档编号:28159421 上传时间:2022-07-26 格式:DOCX 页数:34 大小:1.19MB
返回 下载 相关 举报
2022年最新沪科版九年级数学下册第24章圆重点解析试卷(无超纲).docx_第1页
第1页 / 共34页
2022年最新沪科版九年级数学下册第24章圆重点解析试卷(无超纲).docx_第2页
第2页 / 共34页
点击查看更多>>
资源描述

《2022年最新沪科版九年级数学下册第24章圆重点解析试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新沪科版九年级数学下册第24章圆重点解析试卷(无超纲).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,将绕原点O逆时针旋转90,则旋转后点A的对应点的坐标是( )ABCD2、如图,点A、B、C在上,则的度数是

2、( )A100B50C40D253、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P的坐标是()ABC或D(2,0)或(5,0)4、如图是一个含有3个正方形的相框,其中BCDDEF90,AB2,CD3,EF5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )ABCD5、下列图形中,可以看作是中心对称图形的是( )ABCD6、点P(3,1)关于原点对称的点的坐标是( )A(3,1)B(3,1)C(3,1)D(3,1)7、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为

3、( )A45B60C90D1208、如图,在中,将绕点C逆时针旋转90得到,则的度数为( )A105B120C135D1509、下列汽车标志中既是轴对称图形又是中心对称图形的是( )ABCD10、如图,在中,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PA是O的切线,A是切点若APO=25,则AOP=_2、如图,在平面直角坐标系xOy中,半径为1的半圆O上有一动点B,点,为等腰直角三角形,A为直角顶点,且C在第一象限,则线段OC长度的最大值为_3、两直角边分别为6、8,那么的内接圆的半径为_4

4、、边长相等、各内角均为120的六边形ABCDEF在直角坐标系内的位置如图所示,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60,经过2021次旋转之后,点B的坐标是_5、圆锥的母线长为,底面圆半径为r,则全面积为_三、解答题(5小题,每小题10分,共计50分)1、如图,已知是的直径,是的切线,C为切点,交于点E,平分(1)求证:;(2)求、的长2、解题与遐想如图,RtABC的内切圆与斜边AB相切于点D,AD4,BD5求RtABC的面积王小明:这道题算出来面积刚好是20,太凑巧了吧刚好是4520,有种白算的感觉赵丽华:我把4和5换成m、n再算一

5、遍,ABC的面积总是mn!确实非常神奇了数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了我怎么想不出来呢?计算验证(1)通过计算求出RtABC的面积拼图演绎(2)将RtABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明尺规作图(3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个RtABC,使它的内切圆与斜边AB相切于点D(保留作图的痕迹,写出必要的文字说明)3、如图,和中,连接,点M,N,P分别是的中点

6、(1)请你判断的形状,并证明你的结论(2)将绕点A旋转,若,请直接写出周长的最大值与最小值4、如图1,BC是O的直径,点A,P在O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQAP,交PC 的延长线于点Q,AQ交O于点D,已知AB3,AC4(1)求证:APQABC(2)如图2,当点C为的中点时,求AP的长(3)连结AO,OD,当PAC与AOD的一个内角相等时,求所有满足条件的AP的长5、如图,在ABC中,C90,点O为边BC上一点以O为圆心,OC为半径的O与边AB相切于点D(1)尺规作图:画出O,并标出点D(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD,

7、若CDBD,且AC6求劣弧的长-参考答案-一、单选题1、C【分析】过点A作ACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到 ,可得到点 ,再根据旋转的性质,即可求解【详解】解:如图,过点A作ACx轴于点C, 设 ,则 , , , ,解得: , , ,点 ,将绕原点O顺时针旋转90,则旋转后点A的对应点的坐标是,将绕原点O逆时针旋转90,则旋转后点A的对应点的坐标是故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型2、C【分析】先根据圆周角定理求出AOB的度数,再由等腰三角形的性质即可得出结论【详解】ACB=50,A

8、OB=100,OA=OB,OAB=OBA= 40,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半3、C【分析】由题意根据函数解析式求得A(-4,0),B(0-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,根据相似三角形的性质即可得到结论【详解】解:直线交x轴于点A,交y轴于点B,令x=0,得y=-3,令y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,ADP=AOB=90,

9、PAD=BAO,APDABO,AP= ,OP= 或OP= ,P或P,故选:C【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键4、A【分析】如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 设 而AB2,CD3,EF5,结合正方

10、形的性质可得:而 又 而 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.5、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解【详解】A不是中心对称图形,故本选项不符合题意;B是中心对称图形,故本选项符合题意;C不是中心对称图形,故本选项不符合题意;D不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合6、C

11、【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1)故选:C【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形7、B【分析】设ADC=,ABC=,由菱形的性质与圆周角定理可得 ,求出即可解决问题【详解】解:设ADC=,ABC=; 四边形ABCO是菱形, ABC=AOC; ADC=; 四边形为圆的内接四边形,+=180, , 解得:=120,=60,则ADC=60, 故选:B【点睛】该题主要考查了圆周角定理及其应

12、用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.8、B【分析】由题意易得,然后根据三角形外角的性质可求解【详解】解:由旋转的性质可得:,;故选B【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键9、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:

13、C【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解【详解】解:连接CD,如图所示:点D是AB的中点,在RtACB中,由勾股定理可得;故选D【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键二、填空题1、65【分析】根据切线的性质得到OAAP,根据直角三角形的两锐角

14、互余计算,得到答案【详解】解:PA是O的切线,OAAP,APO=25,故答案为:65【点睛】本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键2、1+【分析】过点C作CDx轴于D,过B作BEx轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据为等腰直角三角形,得出AB=AC,BAC=90,再证BAEACD(AAS),得出BE=AD=x-3,EA=DC,在RtEBO中,根据勾股定理,得出CD=AE=,根据勾股定理CO=,当OD=CD时OC最大,OC=此时解方程即可【详解】解:过点C作CDx轴于D,过B作BEx轴于E,连结OB,设OD=x,点

15、A(3,0)AD=x-3,为等腰直角三角形,AB=AC,BAC=90,BAE+CAD=180-BAC=180-90=90,CDx轴, BEx轴,BEA=ADC=90,ACD+CAD=90,ACD=BAE,在BAE和ACD中,BAEACD(AAS),BE=AD=x-3,EA=DC,在RtEBO中,OB=1,BE= x-3,根据勾股定理,EA=OE+OA=,CD=AE=,CO=,当OD=CD时OC最大,OC=,此时,(舍去),线段OC长度的最大值为故答案为:1+【点睛】本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键3、5

16、【分析】直角三角形外接圆的直径是斜边的长【详解】解:由勾股定理得:AB=10,ACB=90,AB是O的直径,这个三角形的外接圆直径是10,这个三角形的外接圆半径长为5,故答案为:5【点睛】本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等4、【分析】根据旋转找出规律后再确定坐标【详解】正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60,每6次翻转为一个循环组循环,经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,翻转前进的距离为:,如图,过点B作BGx于G,则BAG=60,点B的坐

17、标为故答案为:【点睛】题考查旋转的性质与正多边形,由题意找出规律是解题的关键5、【分析】根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案【详解】解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,故可得,这个扇形的半径为,扇形的弧长为,圆锥的侧面积为;圆锥的全面积为圆锥的底面积侧面积:故答案为:【点睛】本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般三、解答题1、(1)90;(2)AC=,DE=1【分析】(1)如图,可知 (2),可求出的长;,可求

18、出的长【详解】解(1)证明如图所示,连接,是直径,是的切线,平分,(2)解,在中,【点睛】本题考查了角平分线、勾股定理、等腰三角形的性质、三角形相似的判定等知识点解题的关键在于判定三角形相似2、(1)SABC20;(2)见解析;(3)见解析【分析】(1)设O的半径为r,由切线长定理得,AEAD4,BFBD5,CECFr,由勾股定理得,(r+4)2+(r+5)292,进而求得结果;(2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;(3)可先计算AFB135,根据“定弦对定角”作F点的轨迹,根据切线

19、性质,过点F作AB的垂线,再根据直径所对的圆周角是90,确定点C【详解】解:(1)如图1,设O的半径为r,连接OE,OF,O内切于ABC,OEAC,OFBC,AEAD4,BFBD5,OECOFCC90,四边形ECFO是矩形,CFOEr,CEOFr,AC4+r,BC5+r,在RtABC中,由勾股定理得,(r+4)2+(r+5)292,r2+9r20,SABC20;(2)如图2,(3)设ABC的内切圆记作F,AF和BF平分BAC和ABC,FDAB,BAFCAB,ABF,BAF+ABF(BAC+ABC)45,AFB135,可以按以下步骤作图(如图3):以BA为直径作圆,作AB的垂直平分线交圆于点E,

20、以E为圆心,AE为半径作圆,过点D作AB的垂线,交圆于F,连接EF并延长交圆于C,连接AC,BC,则ABC就是求作的三角形【点睛】本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键3、(1)是等腰直角三角形,证明见解析(2)周长最小值为。最大值为【分析】(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题(1)连接BD,CE,如图, BD=C

21、E,点M,N,P分别是的中点/,PN/BD,PN=BDPM=PN, PN/BDPNC=DBCMPN=MPD+DPN=ECA+ACD+PCN+PNC=ACB+DBC+ABD=ACB+ABC=90 是等腰直角三角形;(2)由(1)知,是等腰直角三角形 的周长为 的周长为 当BD最小时即点D在AB上,此时周长最小,AB=8,AD=3BD的最小值为AB-AD=8-3=5周长最小为当点D在BA的延长线上时,BD最大,此时周长最大,BD=AB+AD=8+3=11周长最大为【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题

22、的关键4、(1)见解析;(2)(3)当,时,;当时,【分析】(1)通过证,即可得;(2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP(3)分类讨论, ,三种情况讨论,再通过勾股定理和相似即可求解【详解】证明:(1)AQAPBC是O的直径(2)如图,连接CD,PDBC是O的直径AB3,AC4利用勾股定理得:,即直径为5DP是O的直径,且DP=BC=5点C为的中点CD=PC是等腰直角三角形利用勾股定理得:,则,即:,即:(3)连接AO,OD,OP,CD,OD交AC于点M(已证)OD,OP共线,为O的直径情况一:当时,AP=PC即AP=PC在中,在中,情况二

23、:当时,同情况一:情况三:当时,OA=OD综上所述,当,时,;当时,【点睛】本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系5、(1)作图见解析;(2)【分析】(1)由于D点为O的切点,即可得到OC=OD,且ODAB,则可确定O点在A的角平分线上,所以应先画出A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;(2)连接CD和OD,根据切线长定理,以及圆的基本性质,求出DCB的度数,然后进一步求出COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即

24、可【详解】解:(1)如图所示,先作A的角平分线,交BC于O点,以O为圆心,OC为半径画出O即为所求;(2)如图所示,连接CD和OD,由题意,AD为O的切线,OCAC,且OC为半径,AC为O的切线,AC=AD,ACD=ADC,CD=BD,B=DCB,ADC=B+BCD,ACD=ADC=2DCB,ACB=90,ACD+DCB=90,即:3DCB=90,DCB=30,OC=OD,DCB=ODC=30,COD=180-230=120,DCB=B=30,在RtABC中,BAC=60,AO平分BAC,CAO=DAO=30,在RtACO中,【点睛】本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁