《2022年强化训练北师大版八年级数学下册第三章图形的平移与旋转必考点解析试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版八年级数学下册第三章图形的平移与旋转必考点解析试题(含解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图案中既是轴对称图形,又是中心对称图形的是( )ABCD2、随着2022年北京冬奥会日渐临近,我国冰雪运动
2、发展进入快车道,取得了长足进步在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )ABCD3、如图,将ABC绕点A按逆时针方向旋转得到使点恰好落在BC边上,BAC120,则C的度数为()A18B20C24D284、下列图案中,是中心对称图形的是( )ABCD5、下列图形既是轴对称图形又是中心对称图形的是()ABCD6、在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )A(2,3)B(2,3)C(3,2)D(2,3)7、如图,是由ABO平移得到的,点A的坐标为
3、(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)8、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A先向左平移4个单位长度,再向上平移4个单位长度B先向左平移4个单位长度,再向上平移8个单位长度C先向右平移4个单位长度,再向下平移4个单位长度D先向右平移4个单位长度,再向下平移8个单位长度9、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )A1B2C3D410、如图,将OAB绕点O逆时针旋转80得到OCD,若A的度数为110,D的度数
4、为40,则AOD的度数是( )A50B60C40D30第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,边长为1的正六边形放置于平面直角坐标系中,边在轴正半轴上,顶点在轴正半轴上,将正六边形绕坐标原点顺时针旋转,每次旋转,那么经过第2022次旋转后,顶点的坐标为_2、如图,将ABC绕点C顺时针旋转得到CDE,若点A恰好在ED的延长线上,若ABC110,则ADC的度数为 _3、在平面直角坐标系中,与点关于原点对称的点的坐标是_4、如图,将绕点顺时针旋转得到,点的对应点恰好落在边上,则_(用含的式子表示)5、(1)把点P(2,-3)向右平移2个单位长度到达点,则点的坐标
5、是_(2)把点A(-2,-3)向下平移3个单位长度到达点B,则点B的坐标是_(3)把点P(2,3)向左平移4个单位长度,再向上平移4个单位长度到达点,则点的坐标是_三、解答题(5小题,每小题10分,共计50分)1、如图所示,平移ABC,使点A移动到点A,画出平移后的ABC2、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(1,1)、C(4,1)依据所给信息,解决下列问题:(1)请你画出将向右平移3个单位后得到对应的;(2)再请你画出将沿x轴翻折后得到的;(3)若连接、,请你直接写出四边形的面积3、如图,在
6、直角坐标系中按要求作图,所画图形的顶点必须与每个小正方形的顶点重合(1)画出一个面积等于9的等腰直角三角形ABC,使ABC的三个顶点在坐标轴上,且ABC关于y轴对称,其中点A的坐标为(0,3);(点B在点C的左侧)(2)将ABC向下平移3个单位,再向右平移1个单位得到A1B1C1(点A、B、C的对应点分别为点A1、B1、C1),画出A1B1C1,并直接写出A1C的长4、如图,已知三角形ABC、直线l,点O是线段AB的中点(不写画法,保留画图痕迹,并写出画图结论)(1)画出三角形ABC关于直线l的轴对称的图形;(2)画出三角形ABC关于点O的中心对称的图形5、如图,在平面直角坐标系中,ABC的三
7、个项点坐标分别为A(1,1)、B(3,4)、C(4,2)(1)在图中画出ABC关于y轴对称的A1B1C1;(2)通过平移,使B1移动到原点O的位置,画出平移后的A2B2C2(3)在ABC中有一点P(a,b),则经过以上两次变换后点P的对应点P2的坐标为_-参考答案-一、单选题1、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合
8、题意;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键2、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】A是轴对称图形,不是中心对称图形,故此选项不合题意;B不是轴对称图形,是中心对称图形,故此选项不符合题意;C是轴对称图形,也是中心对称图形,故此选项合题意;D不是轴对称图形,也不是中心对称图形,故此选项不合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后
9、可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合3、B【分析】由,根据等边对等角可得C=CAB,个三角形的外角的性质可得,ABB=C+CAB=2C,由旋转的性质可得AB=AB,进而可得B=ABB=2C,根据三角形的内角和定理可得B+C+CAB=180,进而求得C=20.【详解】解:AB=CB,C=CAB,ABB=C+CAB=2C,旋转得AB=AB,B=ABB=2C,B+C+CAB=180,3C=180-120,C=20.故选B【点睛】本题考查旋转的性质以及等腰三角形的性质,灵活运用这些的性质解决问题是解答本题的关键4、B【分析】由题意依据一个图形绕某一点旋转180,如果旋转后的图
10、形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可【详解】解:A、C、D都是轴对称图形,只有B选项是中心对称图形.故选:B.【点睛】本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合5、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,也不是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一
11、个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形6、D【分析】根据“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”即可求得【详解】解:点A(2,3)关于原点对称的点的坐标是故选D【点睛】本题考查了关于原点对称的点的坐标特征,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键7、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO平移得到的,点A的坐标为(-1,2)
12、,它的对应点A的坐标为(3,4),ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小8、B【分析】利用平移中点的变化规律求解即可【详解】解:在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),点的横坐标减少4,纵坐标增加8,先向左平移4个单位长度,再向
13、上平移8个单位长度故选:B【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度9、B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解【详解】第一个图形是中心对称图形,又是轴对称图形,第二个图形是中心对称图形,又是轴对称图形,第三个图形不是中心对称图形,是轴对称图形,第四个图形不是中心对称图形,是轴对称图形,综上所述第一个和第二个图形既是中心对称图形,又是
14、轴对称图形故选:B【点睛】点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合10、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80得到OCD, A的度数为110,D的度数为40, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.二、填空题1、【分析】连接AD、BD,由勾股定理可得BD,求出OFA=30,得到OA的值,进而求得OB的值,得到点D的坐标
15、,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点的坐标【详解】解:如图,连接AD,BD,在正六边形ABCDEF中,在中,将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60,6次一个循环,经过第2022次旋转后,顶点D的坐标与第一象限中D点的坐标相同,故答案为:【点睛】此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D坐标的规律2、【分析】根据旋转的性质可得,进而根据邻补角的意义,即可求得ADC的度数【详解】解:将ABC绕点C顺时针旋转得到CDE,若点A恰好在ED的延长线上,故答案为:【点睛】本题考查了旋转的性质,邻补角的意义,掌握旋转的性质
16、是解题的关键3、(-3,-1)【分析】由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.【详解】解:在平面直角坐标系中,与点关于原点对称的点的坐标是(-3,-1).故答案为:(-3,-1).【点睛】本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数4、【分析】由旋转的性质可得DAB=,AD=AB,B,进而即可求解【详解】解:将绕点顺时针旋转得到,DAB=,AD=AB,B,B=,故答案是:【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键5
17、、 (4,-3) (-2,-6) (-2,7) 【分析】(1)根据点向右平移2个单位即横坐标加2,纵坐标不变求解即可;(2)根据点向下平移3个单位即横坐标不变,纵坐标减3求解即可;(3)根据点向左平移4个单位长度,再向上平移4个单位即横坐标减4,纵坐标加4求解即可【详解】解:(1)把点P(2,-3)向右平移2个单位长度到达点,横坐标加2,纵坐标不变,点的坐标是(4,-3);(2)把点A(-2,-3)向下平移3个单位长度到达点B,横坐标不变,纵坐标减3,点B的坐标是(-2,-6);(3)把点P(2,3)向左平移4个单位长度,再向上平移4个单位长度到达点,横坐标减4,纵坐标加4,点的坐标是(-2,
18、7)故答案为:(4,-3);(-2,-6);(-2,7)【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小三、解答题1、见解析【分析】先连接AA然后作AA的平行线,利用平移性质分别确定A、B、C平移后的对应点A、B、C,然后再顺次连接即可【详解】解:如图所示,(1)连接AA,过点B作AA的平行线,在上截取BBAA,则点B就是点B的对应点(2)用同样的方法做出点C的对应点C,连接AB、BC、CA,就得到
19、平移后的三角形ABC【点睛】本题主要考查了平移作图,根据题意确定A、B、C平移后的对应点A、B、C是解答本题的关键2、(1)见解析;(2)见解析;(3)16【分析】(1)利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称的点的坐标找出A2、B2、C2的坐标,然后描点即可;(3)运用割补法求解即可【详解】解:(1)如图,即为所作;(2)如图,即为所作;(3)四边形的面积=16【点睛】此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键3、(1)见解析;(2)画图见解析,A1C的长为4【详解】解:(1)如图,ABC即为所求AO=BO=CO=3,且AO
20、BC,BAO=CAO=45,ABC的面积=BCAO=9,BAC=90,且ABC关于y轴对称;(2)如图,A1B1C1即为所求如图,A1C的长为4【点睛】本题考查了根据平移变换作图以及等腰直角三角形的判定和性质,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接4、(1)图形见解析;(2)图形见解析【分析】(1)分别作出点A、B、C关于直线l的对称点F、H、G,再依次连接即可画出三角形ABC关于直线l的轴对称的图形;(2)延长CO至E使OE=OC,则ABE即为三角形ABC关于点O的中心对称的图形【详解】(1)如图所示,ABC关于直线l的轴对称的图形为FHG;(2)如图所示,ABC关于点O
21、的中心对称的图形BAE;【点睛】本题考查的是作图-轴对称作图和作中心对称图形,熟知轴对称和中心对称的性质是解答此题的关键5、(1)见解析;(2)见解析;(3)【分析】(1)关于y轴对称可知,对应点纵坐标不变,横坐标互为相反数,由此可作出;(2)由移动到原点O的位置可知,对应点向右平移了3个单位,向下平移了4个单位,由此可作出;(3)根据两次变换可知,点P先关于y轴对称,再进行平移,即先纵坐标不变,横坐标互为相反数,再向右平移了3个单位,最后向下平移了4个单位,即可得到的坐标【详解】(1)如图所示,即为所作;(2)如图所示,即为所作;(3)点关于y轴对称得,向右平移3个单位,再向下平移4个单位得故答案为:【点睛】本题考查平移与轴对称变换,掌握平移和轴对称的性质是解题的关键