《2022年最新沪科版九年级数学下册第26章概率初步专项测评试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年最新沪科版九年级数学下册第26章概率初步专项测评试题(含答案解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第26章概率初步专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列词语所描述的事件,属于必然事件的是( )A守株待兔B水中捞月C水滴石穿D缘木求鱼2、投掷一枚质地均匀的硬币m
2、次,正面向上n次,下列表达正确的是( )A的值一定是B的值一定不是Cm越大,的值越接近D随着m的增加,的值会在附近摆动,呈现出一定的稳定性3、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5220.5190.5210.520下面有3个推断:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在0.520
3、附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次其中所有合理推断的序号是( )ABCD4、布袋内装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后不放回,再随机摸出一个球,则两次摸出的球都是白球的概率是()ABCD5、下列事件是随机事件的是( )A2021年全年有402天B4年后数学课代表会考上清华大学C刚出生的婴儿体重50公斤D袋中只有10个红球,任意摸出一个球是红球6、下列事件中,是必然事件的是()A如果a2b2,那么abB车辆随机到达一个路口,遇到红灯C
4、2021年有366天D13个人中至少有两个人生肖相同7、下列事件中,属于必然事件的是( )A小明买彩票中奖B在一个只有红球的盒子里摸球,摸到了白球C任意抛掷一只纸杯,杯口朝下D三角形两边之和大于第三边8、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球( )个A12B15C18D549、下列说法中正确的是( )A“打开电视,正在播放新闻联播”是必然事件B某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖C想了解某市城镇居民人均年收入水平,宜采用抽样调查D我区未来三天内肯定下雪10、下列事件是必然事件的是()A同圆中
5、,圆周角等于圆心角的一半B投掷一枚均匀的硬币100次,正面朝上的次数为50次C参加社会实践活动的367个同学中至少有两个同学的生日是同一天D把一粒种子种在花盆中,一定会发芽第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里,装有20个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后,从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象,如图所示,经分析可以推断“摸出黑球”的概率约为_2、一个转盘盘面被分成6块全等的扇形区域,其中2块是
6、红色,4块是蓝色用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是_3、有6张除数字外无差别的卡片,上面分别写着1,2,3,4,5,6随机抽取一张记作,放回并混合在一起,再随机抽一张记作,组成有序实数对,则点在直线上的概率为_4、从这四个数中选一个数,选出的这个数是无理数的概率为_5、已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,从箱中随机取出一个球,这个球是白球的概率为 _三、解答题(5小题,每小题10分,共计50分)1、疫情期间,渤海中学进行了一次线上数学学情调查,九年级(1)班数学李老师对成绩进行分析,绘制成尚不完整的统计图表,如图(1) ,类所在扇形的圆心角的
7、度数是 ,并补全频数分布直方图;(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩在范围内的学生人数;(3)九年级(1)班数学李老师准备从类优生的6人中随机抽取2人进行线上学习经验交流,已知这6人中有2名是无家长管理的留守学生,求恰好只选中其中1名留守学生进行经验交流的概率类别分数段频数(人数)AB16C24D62、苗木种植不仅绿了家园,助力脱贫攻坚,也成为乡村增收致富的“绿色银行”小王承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:移植棵数()成活数()成活率()移植棵数()成活数()成活率()50470.940150013350.890
8、2702350.870350032030.9154003690.923700063357506620.88314000126280.902根据以上信息,回答下列问题:(1)当移植的棵数是7000时,表格记录成活数是_,那么成活率是_(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是_(3)若小王移植10000棵这种树苗,则可能成活_;(4)若小王移植20000棵这种树苗,则一定成活18000棵此结论正确吗?说明理由3、有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球(
9、1)求两次摸出的球的标号相同的概率;(2)求两次摸出的球的标号的和等于4的概率4、学校为了促进垃圾的分类处理,将日常生活中的垃圾分为可回收、厨余和其它三类,分别设置了相应的垃圾箱,“可回收物”箱、“厨余垃圾”箱和“其他垃圾”箱(1)若圆圆把一袋厨余垃圾随机投放,恰好能放对的概率是多少?(2)方方把垃圾分装在三个袋中,可他在投放时有些粗心,每袋垃圾都放错了位置(每个箱中只投放一袋),请你用画树状图的方法求方方把每袋垃圾都放错的概率5、盲盒为消费市场注入了活力某商家将1副单价为60元的蓝牙耳机、2个单价为40元的多接口优盘、1个单价为30元的迷你音箱分别放入4个外观相同的盲盒中(1)如果随机抽一个
10、盲盒,直接写出抽中多接口优盘的概率;(2)如果随机抽两个盲盒,求抽中总价值不低于80元商品的概率-参考答案-一、单选题1、C【分析】根据必然事件就是一定发生的事件逐项判断即可【详解】A守株待兔是随机事件,故该选项不符合题意;B水中捞月是不可能事件,故该选项不符合题意;C水滴石穿是必然事件,故该选项符合题意;D缘木求鱼是不可能事件,故该选项不符合题意故选:C【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键2、D【分析】根据频率与概率的关系以及随机事件的定义判断即可【详解】投掷一枚质地均匀的硬币正面向上的概率是,而投掷一枚质地均匀的硬币正面向上是随机事
11、件,是它的频率,随着m的增加,的值会在附近摆动,呈现出一定的稳定性;故选:D【点睛】本题考查对随机事件的理解以及频率与概率的联系与区别解题的关键是理解随机事件是都有可能发生的时间3、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案【详解】解:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;若再次做随机抛掷该纪念币的实验,
12、则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次正确;故选:C【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答4、B【分析】先画出树状图,再根据概率公式即可完成【详解】所画树状图如下:事件所有可能的结果数有6种,两次摸出的球都是白球的可能结果数有2种,则两次摸出的球都是白球的概率是:故选:B【点睛】本题考查了利用树状图或列表法求概率,会用树状图或列表法找出所有事件的可能结果及某事件发生的可能结果是关键5、B【分析】随机事件是指在一定的条件下可能发生也可能不发生的事件,据此逐项判断即可【详解】解:A、2021年全年有402天,是不可能事件
13、,不符合题意;B、4年后数学课代表会考上清华大学,是随机事件,符合题意;C、刚出生的婴儿体重50公斤,是不可能事件,不符合题意;D、袋中只有10个红球,任意摸出一个球是红球,是必然事件,不符合题意,故选:B【点睛】本题考查随机事件,理解随机事件的概念是解答的关键6、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】解:如果a2b2,那么,原说法是随机事件,故A不符合题意;车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,故C不符合题意
14、;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故选:D【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.7、D【分析】根据事件发生的可能性大小判断即可【详解】解;A、小明买彩票中奖是随机事件,不符合题意;B、在一个只有红球的盒子里摸球,摸到了白球是不可能事件,不符合题意;C、任意抛掷一只纸杯,杯口朝下是随机事件,不符合题意;D、三角形两边之和大于第三边是必然事件,符合题意;故选:D【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件
15、即随机事件是指在一定条件下,可能发生也可能不发生的事件8、A【分析】根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可【详解】解:设有红色球x个,根据题意得:,解得:x=12,经检验,x=12是分式方程的解且符合题意故选:【点睛】本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数9、C【分析】根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生
16、的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】A. “打开电视,正在播放新闻联播”是随机事件,故该选项不正确,不符合题意;B. 某次抽奖活动中奖的概率为,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;C. 想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;D. 我区未来三天内不一定下雪,故该选项不正确,不符合题意;故选C【点睛】本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键 10、C【分析】直接利用随机事件以及不可能事件、必然事件的定义分析即可得答案【详解】A、同圆中,圆
17、周角等于圆心角的一半,是随机事件,不符合题意;B、投掷一枚均匀的硬币100次,正面朝上的次数为50次,是随机事件,不符合题意;C、参加社会实践活动的367个同学中至少有两个同学的生日是同一天,是必然事件,符合题意;D、把一粒种子种在花盆中,一定会发芽,是随机事件,不符合题意故选:C【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件二、填空题1、【分析】根据“摸出黑球的频率”与“摸球的总次数”的关系图象,即可得出“摸出黑球”的概率【详解】解
18、:由图可知,摸出黑球的概率约为0.2,故答案为:0.2【点睛】本题主要考查用频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率2、【分析】根据简单概率公式进行计算即可【详解】解:根据题意,共有6块全等的扇形区域,其中2块是红色,4块是蓝色则指针对准红色区域的可能性大小是故答案为:【点睛】本题考查了几何概率,立即题意是解题的关键3、【分析】画树状图表示所有等可能的结果,再计算点在直线上的概率【详解】解:画树状图为:共有36种机会均等的结果,其中组成有序实数对,则点在直线上的有4种,所以点在直线上的概率为,故答案为:【点睛】本题考查用树状图或列表法表示概率,是重要考点,难度较小,掌
19、握相关知识是解题关键4、【分析】确定无理数的个数,利用概率公式计算【详解】解:这四个数中无理数有,选出的这个数是无理数的概率为,故答案为:【点睛】此题考查了无理数的定义,概率的计算公式,正确判断无理数的解题的关键5、【分析】根据概率的公式,即可求解【详解】解:根据题意得:这个球是白球的概率为 故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键三、解答题1、(1)2,图见解析;(2)450人;(3)【分析】(1)先根据类的信息可求出调查的总人数,由此即可得出的值,再求出类所占
20、百分比,然后乘以可得圆心角的度数,最后根据类的人数补全频数分布直方图即可;(2)利用720乘以成绩在范围内的学生所占百分比即可得;(3)先画出树状图,从而可得随机抽取2人进行线上学习经验交流的所有可能的结果,再找出恰好只选中其中1名留守学生进行经验交流的结果,然后利用概率公式即可得【详解】解:(1)调查的总人数为(人),则,类所在扇形的圆心角的度数是,故答案为:2,补全频数分布直方图如图所示:(2)(人),答:估计该校成绩在范围内的学生人数为450人;(3)把类优生的6人分别记为1,2,3,4,5,6,其中1,2为留守学生,画树状图如下:由图可知,共有30种等可能的结果,恰好只选中其中1名留守
21、学生进行经验交流的结果有16种,则所求的概率为,答:恰好只选中其中1名留守学生进行经验交流的概率为【点睛】本题考查了频数分布直方图、利用列举法求概率等知识点,熟练掌握统计调查的相关知识和列举法是解题关键2、(1)6335;0.905;(2)0.900;(3)9000棵;(4)此结论不正确,理由见解析【分析】(1)根据表格中的数据求解即可;(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;(3)利用成活数=总数成活概率即可得到答案;(4)根据概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,即可得到
22、答案(1)解:由表格可知,当移植的棵数是7000时,表格记录成活数是6335,成活率,故答案为:6335;0.905;(2)解:大量重复试验下,频率的稳定值即为概率值,可以估计树苗成活的概率是0.900,故答案为:0.900;(3)解:由题意得:若小王移植10000棵这种树苗,则可能成活课树苗,故答案为:9000棵;(4)解:若小王移植20000棵这种树苗,则一定成活18000棵此结论不正确,理由如下:概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,若小王移植20000棵这种树苗,不一定能成活18000棵,只能说是可能成活18000棵【点睛】本题考查利用频率估计概
23、率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率3、(1);(2)【分析】(1)先列出树状图,找到所有的等可能性的结果数,然后找到两次摸出的球的标号相同的结果数,最后利用概率公式求解即可;(2)根据(1)所列树状图,找到两次摸出的球的标号和为4的结果数,利用概率公式求解即可【详解】解:(1)列树状图如下所示:由树状图可知一共有16种等可能性的结果数,其中两次摸出的球的标号相同的结果数有4种,(两次摸出的球的标号相同);(2)由树状图可知一共
24、有16种等可能性的结果数,其中两次摸出的球的标号的和为4的结果数有(1,3),(2,2),(3,1)3种,(两次摸出的球的标号的和等于4)【点睛】本题主要考查了树状图法或列表法求解概率,解题的关键在于能够熟练掌握树状图法或列表法求解概率4、(1),(2)【分析】(1)直接利用概率公式求解即可;(2)画树状图展示所有6种等可能的结果数,找出小亮投放正确的结果数,然后根据概率公式求解;【详解】解:(1)圆圆把一袋厨余垃圾随机投放,共有三种等可能结果,恰好能放对只有一种,恰好能放对的概率是(2)将生活垃圾分为厨余、可回收和其他三类,分别记为a,b,c,相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“
25、其他垃圾”箱,分别记为A,B,C,画树状图为:共有6种等可能的结果数,其中方方把每袋垃圾都放错的有2种:所以方方把每袋垃圾都放错的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率5、(1)抽中多接口优盘的概率为;(2)P(抽中商品总价值不低于80元)【分析】(1)利用列举法求解即可;(2)先用列表法或树状图法得出所有的等可能的结果数,然后找到总价值不低于80元商品的结果数,最后根据概率公式求解即可【详解】解:(1)随机抽取一个盲盒可以抽到蓝牙耳机,多接口优盘1,多接口优盘2,迷你音箱,一共4种等可能性的结果,其中抽到多接口优盘的结果数有2种,抽到多接口优盘;(2)将蓝牙耳机记为A,多接口U盘记为、,迷你音箱记作C则从4个盲盒中随机抽取2个的树状图如下:由上图可知,随机抽两个盲盒,所获商品可能出现的结果有12种,它们出现的可能性相等,其中抽中商品总价值不低于80元的结果有8种P(抽中商品总价值不低于80元)【点睛】本题主要考查了列举法求解概率,树状图或列表法求解概率,解题的关键在于能够熟练掌握相关知识进行求解