《2022年人教版初中数学七年级下册第九章不等式与不等式组定向测试练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年人教版初中数学七年级下册第九章不等式与不等式组定向测试练习题(无超纲).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第九章不等式与不等式组定向测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、若不等式组解集是,则( )ABCD2、若关于x的分式方程+1有整数解,且关于y的不等式组恰有2个整数解,则所有满足条件的整数a的值之积是()A0B24C72D123、关于的两个代数式与的值的符号相反,则的取值范围是( )ABCD或4、解集如图所示的不等式组为()ABCD5、若a+b+c0,且|a|b|c|,则下列结论一定正确的是()Aabc0Babc0CacabDacab6、不等式2x13的解集在
2、数轴上表示为()ABCD7、一个不等式的解集为x1,那么在数轴上表示正确的是()ABCD8、已知x2不是关于x的不等式2xm4的整数解,x3是关于x的不等式2xm4的一个整数解,则m的取值范围为()A0m2B0m2C0m2D0m29、下列不等式一定成立的是( )ABCD10、不等式的解集在数轴上表示正确的是( )ABCD二、填空题(5小题,每小题4分,共计20分)1、不等式组所有整数解的和是_2、若关于x的不等式组有解,则a的取值范围是_3、不等式4x32x+1的非负整数解的和是 _4、a、b、c表示的数在数轴上如图所示,试填入适当的”“”或“”(1)_;(2)_0;(3)_;(4)_;(5)
3、_;(6)_;(7)_;(8)_5、已知关于x的不等式组只有两个整数解,则实数m的取值范围是 _三、解答题(5小题,每小题10分,共计50分)1、为了打造区域中心城市,实现跨越式发展,某市花城新区建设正按投资计划有序推进花城新区建设工程部因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机的有关信息如下表所示:型号租金(单位:元/台时)挖掘土石方量(单位:m3/台时)甲型10060乙型12080(1)用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机分别需要租多少台?(2
4、)每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案(每种型号的挖掘机至少租一台)?2、为纪念今年建党一百周年,学校集团党委决定印制党旗飘扬、党建知识两种党建读本已知印制党旗飘扬5册和党建知识10册,需要350元;印制党旗飘扬3册和党建知识5册,需要190元(1)求印制两种党建读本每册各需多少元?(2)考虑到宣传效果和资金周转,印制党旗飘扬不能少于60册,且用于印制两种党建读本的资金不能超过2630元,现需要印制两种读本共100册,问有哪几种印制方案?哪种方案费用最少?3、求不等式6411x4的正整数解4、解不等式组,并把解集在数轴上表示出来5、解不等式组:
5、,并把其解集在数轴上表示出来-参考答案-一、单选题1、C【分析】首先解出不等式组的解集,然后与x4比较,即可求出实数m的取值范围【详解】解:由得2x4m-10,即x2m-5;由得xm-1;不等式组的解集是x4,若2m-5=4,则m,此时,两个不等式解集为x4,x,不等式组解集为x4,符合题意;若m-1=4,则m=5,此时,两个不等式解集为x5,x4,不等式组解集为x5,不符合题意,舍去;故选:C【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,
6、大小小大中间找,大大小小解不了2、D【分析】根据分式方程的解为正数即可得出a1或3或4或2或6,根据不等式组有解,即可得出1+y,找出31+2中所有的整数,将其相乘即可得出结论【详解】先解分式方程,再解一元一次不等式组,进而确定a的取值解:+1,x+x22ax2x+ax2+2(2+a)x4x 关于x的分式方程+1有整数解,2+a1或2或4且2a1或3或4或2或62(y1)+a15y,2y2+a15y2y5y1a+23y3ay1+2y+10,2y1y1+y关于y的不等式组恰有2个整数解,31+26a3又a1或3或4或2或6,a3或4所有满足条件的整数a的值之积是3(4)12故选:D【点睛】本题考
7、查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出31+2是解题的关键3、C【分析】代数式x-3与x+5的符号相反,分两种情况,解不等式组即可【详解】解:根据题意得,或,解得:,故选:C【点睛】本题考查了解一元一次不等式组,是基础知识要熟练掌握4、A【分析】根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可【详解】解:根据图象可得,数轴所表示的不等式组的解集为:,A选项解集为:,符合题意;B选项解集为:,不符合题意;C选项解集为:,不符合题意;D选项解集为
8、:,不符合题意;故选:A【点睛】题目主要考查不等式组的解集在数轴上的表示及解集的确定,理解不等式组解集的确定方法是解题关键5、C【分析】由的绝对值最小,分析不符合题意,再由 分析可得中至少有一个负数,至多两个负数,再分情况讨论即可得到答案.【详解】解: a+b+c0,且|a|b|c|,当时,则 则 不符合题意; 从而:中至少有一个负数,至多两个负数,当 且|a|b|c|, 此时B,C成立,A,D不成立,当 且|a|b|c|, 此时A,C成立,B,D不成立,综上:结论一定正确的是C,故选C【点睛】本题考查的是绝对值的含义,有理数的和的符号的确定,有理数积的符号的确定,利用数轴表示有理数,扎实的基
9、础知识是解题的关键.6、D【分析】先解出一元一次不等式的解集,再根据不等式解集的表示方法做出判断即可【详解】解:由2x13得:x2,则不等式2x13的解集在数轴上表示为,故选:D【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握在数轴上表示不等式的解集的方法是解答的关键7、C【分析】根据数轴上数的大小关系解答【详解】解:解集为x1,那么在数轴上表示正确的是C,故选:C【点睛】此题考查利用数轴表示不等式的解集,正确掌握数轴上数的大小关系及表示解集的方法是解题的关键8、B【分析】由2x-m4得x,根据x=2不是不等式2x-m4的整数解且x=3是关于x的不等式2x-m4的一个整数解
10、得出2、3,解之即可得出答案【详解】解:由2x-m4得x,x=2不是不等式2x-m4的整数解,2,解得m0;x=3是关于x的不等式2x-m4的一个整数解,3,解得m2,m的取值范围为0m2,故选:B【点睛】本题主要考查了一元一次不等式的整数解,解题的关键是根据不等式整数解的情况得出关于m的不等式9、B【分析】根据不等式的性质依次判断即可【详解】解:A.当y0时不成立,故该选项不符合题意;B.成立,该选项符合题意;C. 当x0时不成立,故该选项不符合题意;D. 当m0时不成立,故该选项不符合题意;故选:B【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解决本题的关键10、A【分析】先解不
11、等式,再利用数轴的性质解答【详解】解:解得,不等式的解集在数轴上表示为:故选:A【点睛】此题考查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键二、填空题1、-3【分析】分别解不等式得到不等式组的解集,确定整数解得到答案【详解】解: ,解不等式,得,解不等式,得,不等式组的解集为,整数解为:-3、-2、-1、0、1、2,-3-2-1+0+1+2=-3,故答案为:-3【点睛】此题考查求不等式组的整数解,有理数的加减法,解不等式,熟练掌握解不等式的解法是解题的关键2、a3【分析】由题意直接根据不等式组的解集的表示方法进行分析可得答案【详解】解:由题意得:a3,故答案为:
12、a3【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键3、3【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1得出不等式的解集,从而得出答案【详解】解:4x32x+1移项,得:4x2x1+3,合并同类项,得:2x4,系数化为1,得:x2,不等式的非负整数解为0、1、2,不等式的非负整数解的和为0+1+23,故答案为:3【点睛】本题主要考查了一元一次不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法4、 【分析】本题主要是根据不等式的性质:(1)不等式的两边同时加上
13、或减去同一个数或式子,不等式的方向不改变;(2)不等式的两边同时乘或除以一个大于零的数或式子,不等号的方向不变;(3)不等式的两边同时乘或除以一个小于零的数或式子,不等号的方向改变据此可以对不等号的方向进行判断【详解】解:由数轴的定义得:a0,b0,c0,abc ,(1)不等式ab的两边同加上3,不改变不等号的方向,则;(2)不等式ab的两边同减去b,不改变不等号的方向,则a-bb-b,即a-b0;(3)不等式ab的两边同乘以,不改变不等号的方向,则;(4)不等式ab的两边同乘以-2,改变不等号的方向,则b的两边同乘以-4,改变不等号的方向,则-4a-4b;不等式-4a-4b的两边同加上1,不
14、改变不等号的方向,则b的两边同乘以正数,不改变不等号的方向,则 ;(7)不等式ab的两边同减去c,不改变不等号的方向,则;(8)不等式ab的两边同乘以正数b,不改变不等号的方向,则【点睛】本题主要是考查不等式的基本性质,熟练掌握不等式的三个性质的应用是解本题的关键,同时不等式的性质(3)是类似题型中考查的重点及易错点5、【分析】分和两种情况,列出不等式组,根据不等式组有两个整数解求解可得【详解】解:当时,;当时,不等式的解为,不等式组只有两个整数解,两个整数解为和,故答案为:【点睛】本题主要考查一元一次不等式组的整数解,解题的关键是根据绝对值性质分类讨论及由不等式组的整数解得出的值三、解答题1
15、、(1)甲种型号的挖掘机需要租5台,乙种型号的挖掘机需要租3台;(2)共有一种租用方案,即甲种型号的挖掘机租1台,乙种型号的挖掘机租6台【解析】【分析】(1)设甲种型号的挖掘机需要租台,从而可得乙种型号的挖掘机需要租台,再根据“恰好完成每小时的挖掘量”建立方程,解方程即可得;(2)设甲种型号的挖掘机租台,乙种型号的挖掘机租台,根据“每小时支付的租金不超过850元,又恰好完成每小时的挖掘量”建立不等式和方程,再结合为正整数进行分析即可得【详解】解:(1)设甲种型号的挖掘机需要租台,则乙种型号的挖掘机需要租台,由题意得:,解得,答:甲种型号的挖掘机需要租5台,乙种型号的挖掘机需要租3台;(2)设甲
16、种型号的挖掘机租台,乙种型号的挖掘机租台,由题意得:,解得,因为为正整数,所以分以下四种情况进行讨论:当时,符合题意;当时,不符题意,舍去;当时,不符题意,舍去;当时,不符题意,舍去;综上,共有一种租用方案,即甲种型号的挖掘机租1台,乙种型号的挖掘机租6台【点睛】本题考查了一元一次方程的应用、一元一次不等式的应用,正确建立方程和不等式是解题关键2、(1)印制党旗飘扬每册30元,党建知识每册20元;(2)有四种方案:方案一:印制党旗飘扬60册,印制党建知识40册,需要付款:2600元;方案二:印制党旗飘扬61册,印制党建知识39册,需要付款:2610元;方案三:印制党旗飘扬62册,印制党建知识3
17、8册,需要付款:2620元;方案四:印制党旗飘扬63册,印制党建知识37册,需要付款:2630元;方案一费用最少【解析】【分析】(1)根据题意设印制党旗飘扬每册x元,党建知识每册y元,进而依据等量关系建立二元一次方程组求解;(2)根据题意设印制党旗飘扬a册,则印制党建知识(100a)册,可得30a+20(100a)2630且a60,进而求得a对四种方案进行分析即可.【详解】解:(1)设印制党旗飘扬每册x元,党建知识每册y元,由题意可得,解得,答:印制党旗飘扬每册30元,党建知识每册20元;(2)设印制党旗飘扬a册,则印制党建知识(100a)册,由题意可得:30a+20(100a)2630且a6
18、0,解得:60a63,a为整数,a60,61,62,63,有四种方案,方案一:印制党旗飘扬60册,印制党建知识40册,需要付款:3060+20402600(元);方案二:印制党旗飘扬61册,印制党建知识39册,需要付款:3061+20392610(元);方案三:印制党旗飘扬62册,印制党建知识38册,需要付款:3062+20382620(元);方案四:印制党旗飘扬63册,印制党建知识37册,需要付款:3063+20372630(元);由上可得,方案一费用最少【点睛】本题考查二元一次方程的应用以及一元一次不等式的应用,读懂题意并根据题意等量或不等量关系建立方程组和不等式是解题的关键.3、1,2,
19、3,4,5【解析】【分析】先求出不等式的解集,再求出不等式的正整数解即可【详解】解:移项得:-11x4-64,合并同类项得:-11x-60,不等式的解集为x,正整数解为1,2,3,4,5【点睛】本题考查了解一元一次不等式和不等式的整数解,能求出不等式的解集是解此题的关键4、2x1,图见解析【解析】【分析】分别解不等式组中的两个不等式,再取两个不等式的解集的公共部分,再在数轴上表示不等式组是解集即可.【详解】解:,解不等式得:x1,解不等式得:x2,不等式组的解集为:2x1在数轴上表示不等式组的解集为:【点睛】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,掌握解不等式组的方法是解本题的关键.5、1.5x1,图见解析【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集最后在数轴上表示出不等式组的解集即可【详解】解: 解不等式3x45x1,得:x1.5,解不等式,得:x1,则不等式组的解集为1.5x1,将其解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式组,在数轴上表示出不等式组的解集,解题的关键在于能够熟练掌握求不等式组解集的方法