2022年最新沪教版七年级数学第二学期第十四章三角形专题练习试卷(精选).docx

上传人:知****量 文档编号:28157365 上传时间:2022-07-26 格式:DOCX 页数:34 大小:1.18MB
返回 下载 相关 举报
2022年最新沪教版七年级数学第二学期第十四章三角形专题练习试卷(精选).docx_第1页
第1页 / 共34页
2022年最新沪教版七年级数学第二学期第十四章三角形专题练习试卷(精选).docx_第2页
第2页 / 共34页
点击查看更多>>
资源描述

《2022年最新沪教版七年级数学第二学期第十四章三角形专题练习试卷(精选).docx》由会员分享,可在线阅读,更多相关《2022年最新沪教版七年级数学第二学期第十四章三角形专题练习试卷(精选).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC中,ACB90,ABC40将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是

2、( )A50B70C110D1202、如图,在RtABC中,ACB90,BAC40,直线ab,若BC在直线b上,则1的度数为()A40B45C50D603、在ABC中,ABC,则C()A70B80C100D1204、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )A10B8C7D45、如图,于点,与交于点,若,则等于( )A20B50C70D1106、如图,ADBC,C30,ADB:BDC1:2,EAB72,以下四个说法:CDF30;ADB50;ABD22;CBN108其中正确说法的个数是()A1个B2个C3个D4个7、已知的三边长分别为a,b,c,则a,b,c的

3、值可能分别是( )A1,2,3B3,4,7C2,3,4D4,5,108、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D69、如图,ABC中,ABC与ACB的平分线交于点F,过点F作DEBC交AB于点D,交AC于点E,那么下列结论:BDF是等腰三角形;DEBD+CE;若A50,则BFC115;DFEF其中正确的有( )A1个B2个C3个D4个10、下列所给的各组线段,能组成三角形的是:( )A2,11,13B5,12,7C5,5,11D5,12,13第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在等边三角形中,是边的高线,

4、延长至点,使,则BE的长为_2、如图,在ABC中,ABAC在AB、AC上分别截取AP,AQ,使APAQ再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在BAC内交于点R,作射线AR,交BC于点D若BC6,则BD的长为_3、如图,点E,F分别为线段BC,DB上的动点,BEDF要使AE+AF最小值,若用作图方式确定E,F,则步骤是 _4、如图,在正方形网格中,BAC_DAE(填“”、“”或“”)5、如图,AB,CD相交于点O,请你补充一个条件,使得,你补充的条件是_三、解答题(10小题,每小题5分,共计50分)1、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的

5、端点都在格点上要求以为边画一个等腰,且使得点为格点请在下面的网格图中画出3种不同的等腰2、阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型半角模型可证出多个几何结论,例如:如下图1,在正方形中,以为顶点的,、与、边分别交于、两点易证得大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、三点共线,进而可证明,故任务:如图3,在四边形中,以为顶点的,、与、边分别交于、两点请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由3、已知:如图,AD,BE相交于点O

6、,ABBE,DEAD,垂足分别为B,D,OA=OE求证:ABOEDO4、已知:(1)O是BAC内部的一点如图1,求证:BOCA;如图2,若OAOBOC,试探究BOC与BAC的数量关系,给出证明(2)如图3,当点O在BAC的外部,且OAOBOC,继续探究BOC与BAC的数量关系,给出证明5、在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE =BAC,连接CE(1)如图1,当点D在线段BC上,如果BAC=90,则BCE= 度;(2)设,如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;当点在直线BC上(线段BC

7、之外)移动,则,之间有怎样的数量关系?请直接写出你的结论6、如图,在ABC中,BAC90,ABAC,射线AE交BC于点P,BAE15;过点C作CDAE于点D,连接BE,过点E作EFBC交DC的延长线于点F(1)求F的度数;(2)若ABE75,求证:BECF7、如图,在ABC中,ABAC,M,N分别是AB,AC边上的点,并且MNBC(1)AMN是否是等腰三角形?说明理由;(2)点P是MN上的一点,并且BP平分ABC,CP平分ACB求证:BPM是等腰三角形;若ABC的周长为a,BCb(a2b),求AMN的周长(用含a,b的式子表示)8、如图,为等边三角形,D是BC中点,CE是的外角的平分线求证:9

8、、已知AMCN,点B在直线AM、CN之间,ABBC于点B(1)如图1,请直接写出A和C之间的数量关系: (2)如图2,A和C满足怎样的数量关系?请说明理由(3)如图3,AE平分MAB,CH平分NCB,AE与CH交于点G,则AGH的度数为 10、如图,AD,BC相交于点O,AODO(1)如果只添加一个条件,使得AOBDOC,那么你添加的条件是 (要求:不再添加辅助线,只需填一个答案即可);(2)根据已知及(1)中添加的一个条件,证明ABDC-参考答案-一、单选题1、B【分析】根据旋转可得,得【详解】解:,将绕点逆时针旋转得到,使点的对应点恰好落在边上,故选:B【点睛】本题考查了旋转的性质,等腰三

9、角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质2、C【分析】根据三角形内角和定理确定,然后利用平行线的性质求解即可【详解】解:,故选:C【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键3、D【分析】根据三角形的内角和,进而根据已知条件,将代入即可求得【详解】解:在ABC中,ABC,解得故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键4、C【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则,即又为整数,则整数m的最大值是7故选C【点睛】

10、本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键5、C【分析】由与,即可求得的度数,又由,根据两直线平行,同位角相等,即可求得的度数【详解】解:,故选:C【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键6、D【分析】根据ADBC,C30,利用内错角相等得出FDC=C=30,可判断正确;根据邻补角性质可求ADC=180-FDC=180-30=150,根据ADB:BDC1:2,得出方程3ADB=150,解方程可判断正确;根据EAB72,可求邻补角DAN=180-EAB=180-72=108,利用三角形内角和可求A

11、BD=180-NAD-ADB=180-108-50=22可判断正确,利用ADBC,同位角相等的CBN=DAN=108可判断正确即可【详解】解:ADBC,C30,FDC=C=30,故正确;ADC=180-FDC=180-30=150,ADB:BDC1:2,BDC=2ADB,ADC=ADB+BDC=ADB+2ADB=3ADB=150,解得ADB=50,故正确EAB72,DAN=180-EAB=180-72=108,ABD=180-NAD-ADB=180-108-50=22,故正确ADBC,CBN=DAN=108,故正确其中正确说法的个数是4个故选择D【点睛】本题考查平行线性质,角的倍分,邻补角性质

12、,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键7、C【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解【详解】解:A、1+23,不能组成三角形,不符合题意;B、3+47,不能组成三角形,不符合题意;C、2+34,能组成三角形,符合题意;D、4+510,不能组成三角形,不符合题意;故选:C【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可8、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、

13、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键9、C【分析】根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答【详解】解:BF是AB的角平分线,DBFCBF,DEBC,DFBCBF,DBFDFB,BDDF,BDF是等腰三角形;故正确;同理,EFCE,DEDF+EFBD+CE,故正确;A50,ABC+ACB130,BF平分ABC,CF平分ACB,FBC+FCB(ABC+ACB)65,BFC18065115,故正确;当ABC为等腰三角形时,DFEF,但ABC不一定是等腰三角形,DF不一定等于EF,故错误故选:C【点睛】本题主要考查等腰三角形的性质、角平分线的定

14、义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键10、D【分析】根据三角形三边关系定理,判断选择即可【详解】2+11=13,A不符合题意;5+7=12,B不符合题意;5+5=1011,C不符合题意;5+12=1713,D符合题意;故选D【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键二、填空题1、3【分析】由等腰三角形三线合一的性质,得到AD=DC=1,由BE=BC+CE不难求解【详解】解:三角形是等边三角形,BCAC2,又 是边的高线,DC, 1,故答案为:3.【点睛】本题考查了等边三角形的性质,掌握等腰三角形三线合一的

15、性质是解本题的关键2、3【分析】根据题意依据等腰三角形的性质,即可得到BD=BC,进而分析计算即可得出结论【详解】解:由题可得,AR平分BAC,又AB=AC,AD是三角形ABC的中线,BD=BC=6=3.故答案为:3【点睛】本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合3、连接,作;以点为圆心、长为半径画弧,交于点;连接交于点;以点为圆心、长为半径画弧,交于点【分析】按照连接,作;以点为圆心、长为半径画弧,交于点;连接交于点;以点为圆心、长为半径画弧,交于点的步骤作图即可得【详解】解:步骤是连接,作;以点为圆心、长为半径画弧,交于点;

16、连接交于点;以点为圆心、长为半径画弧,交于点;如图,点即为所求故答案为:连接,作;以点为圆心、长为半径画弧,交于点;连接交于点;以点为圆心、长为半径画弧,交于点【点睛】本题考查了作一个角等于已知角、两点之间线段最短、作线段、全等三角形的判定与性质等知识点,熟练掌握尺规作图的方法是解题关键4、【分析】找到点,连接(见解析),根据等腰直角三角形的性质、网格特点即可得【详解】解;如图,找到点,连接,则是等腰直角三角形,又是等腰直角三角形,故答案为:【点睛】本题考查了等腰直角三角形、角的大小比较,正确找出点是解题关键5、(答案不唯一)【分析】在与中,已经有条件: 所以补充可以利用证明两个三角形全等.【

17、详解】解:在与中, 所以补充: 故答案为:【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明两个三角形全等”是解本题的关键.三、解答题1、答案见解析【分析】AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可【详解】解:如图,答案不唯一【点睛】本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可2、成立,证明见解析【分析】根据阅读材料将ADF旋转120再证全等即可求得EF= BE+DF 【详解】解:成立证明:将绕点顺时针旋转,得到,、三点共线,【点睛】本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键3

18、、见解析【分析】利用AAS即可证明ABOEDO【详解】证明:ABBE,DEAD,B=D=90在ABO和EDO中,ABOEDO【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键4、(1)见解析;BOC2A,见解析;(2)BOC2BAC,见解析【分析】(1)连接AO并延长AO至点E,根据三角形外角性质解答即可;延长AO至点E,根据三角形外角性质解答即可;(2)根据三角形外角性质和三角形内角和定理解答即可【详解】证明:(1)如图所示:连接AO并延长AO至点E,则BOEBAO,COECAO,BOCA;BOC与BAC的数量关系:BOC2A;证明:如图所示,延长AO至点E,则BO

19、EBAO+B,COECAO+C,OAOBOC,BAOB,CAOC,BOCCOE+COEBAO+B+CAO+C2(BAO+CAO)2BAC;(2)BOC与BAC的数量关系:BOC2BAC;证明:如图所示,设Bx, OAOBOC,BBAOx,COACBAC+x;在BEO和AEC中,有:B+BOCC+CAE;即x+BOCCAE+x+CAE2BAC+x;即BOC2BAC【点睛】此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答5、(1)90;(2),见解析;或【分析】(1)由等腰直角三角形的性质可得ABCACB45,由“SAS”可证BADCAE,可得ABCACE45,可求BCE的度数

20、;(2)由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论;分两种情况,由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论【详解】解:(1),AB=AC,AD=AE, 在和中,(2)或 理由:,即在和中, ,如图:,即在和中, ,综上所述:点D在直线BC上移动,+180或【点睛】本题主要考查全等三角形的判定及性质,等腰三角形的性质和三角形内角和定理,掌握全等三角形的判定方法及性质是关键6、(1);(2)证明见详解【分析】(1)根据三角形内角和及等腰三角形的性质可得,由各角之间的关系及三角形内角和定理可得,最后由平行线的性质即可得出;(2)由题

21、意及各角之间的关系可得,得出,利用平行线的判定定理即可证明【详解】解:(1),;(2),由(1)可得,(内错角相等,两直线平行)【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键7、(1)AMN是是等腰三角形;理由见解析;(2)证明见解析;ab【分析】(1)由等腰三角形的性质得到ABC=ACB,由平行线的性质得到AMN=ABC,ANM=ACB,于是得到AMN=ANM,根据等角对等边即可证得结论;(2)由角平分线的定义得到PBM=PBC,由平行线的性质得到MPB=PBC,于是得到PBM=MPB,根据等角对等边即可证得结论;由知MB=MP,同理可得:N

22、C=NP,故AMN的周长=AB+AC,再根据已知条件即可求出结果(1)解:AMN是是等腰三角形,理由如下:ABAC,ABCACB,MNBC,AMNABC,ANMACB,AMNANM,AMAN,AMN是等腰三角形;(2)证明:BP平分ABC,PBMPBC,MNBC,MPBPBCPBMMPB,MBMP,BPM是等腰三角形;由知MBMP,同理可得:NCNP,AMN的周长AM+MP+NP+ANAM+MB+NC+ANAB+AC,ABC的周长为a,BCb,AB+AC+ba,AB+ACabAMN的周长ab【点睛】本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键8

23、、证明见解析.【分析】过D作DGAC交AB于G,由等边三角形的性质和平行线的性质得到BDGBGD60,于是得到BDG是等边三角形,再证明AGDDCE即可得到结论.【详解】证明:过D作DGAC交AB于G,ABC是等边三角形,ABAC,BACBBAC60,又DGAC,BDGBGD60,BDG是等边三角形,AGD180BGD120,DGBD,点D为BC的中点,BDCD,DGCD,EC是ABC外角的平分线,ACE(180ACB)60,BCEACBACE120AGD,ABAC,点D为BC的中点,ADBADC90,又BDG60,ADE60,ADGEDC30,在AGD和ECD中,AGDECD(ASA)ADD

24、E【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键9、(1)A+C90;(2)CA90,见解析;(3)45【分析】(1)过点B作BEAM,利用平行线的性质即可求得结论;(2)过点B作BEAM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论【详解】(1)过点B作BEAM,如图,BEAM,AABE,BEAM,AMCN,BECN,CCBE,ABBC,ABC90,A+CABE+CBEABC90故答案为:A+C90;(2)A和C满足:CA90理由:过点

25、B作BEAM,如图,BEAM,AABE,BEAM,AMCN,BECN,C+CBE180,CBE180C,ABBC,ABC90,ABE+CBE90,A+180C90,CA90;(3)设CH与AB交于点F,如图,AE平分MAB,GAFMAB,CH平分NCB,BCFBCN,B90,BFC90BCF,AFGBFC,AFG90BCFAGHGAF+AFG,AGHMAB+90BCN90(BCNMAB)由(2)知:BCNMAB90,AGH904545故答案为:45【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键10、(1)OB=OC(或,或);(2)见解析【分析】(1)根据SAS添加OB=OC即可;(2)由(1)得AOBDOC,由全等三角形的性质可得结论【详解】解:(1)添加的条件是:OB=OC(或,或)证明:在和中所以,AOBDOC(2)由(1)知,AOBDOC所以,ABDC【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁