《2021-2022学年最新2022年沪科版九年级数学下册期末定向训练-B卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新2022年沪科版九年级数学下册期末定向训练-B卷(含答案详解).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年沪科版九年级数学下册期末定向训练 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值
2、是( )A60B90C120D1802、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )A平移B翻折C旋转D以上三种都不对3、如图,该几何体的左视图是( )ABCD4、把7个同样大小的正方体形状的积木堆放在桌子上,从正面和左面看到的形状图都是如图所示的同样的图形,则其从上面看到的形状图不可能是()ABCD5、下列事件中,是必然事件的是( )A刚到车站,恰好有车进站B在一个仅装着白乒乓球的盒子中,摸出黄乒乓球C打开九年级上册数学教材,恰好是概率初步的内容D任意画一个三角形,其外角和是3606、如图是由几个小立方体所搭成的几何体从上面看到的平面图形,小正方形中的数字表示在该位置小立方
3、体的个数,则这个几何体从正面看到的平面图形为( ) 线 封 密 内 号学级年名姓 线 封 密 外 ABCD7、下列事件中,是必然事件的是()A实心铁球投入水中会沉入水底B车辆随机到达一个路口,遇到红灯C打开电视,正在播放大国工匠D抛掷一枚硬币,正面向上8、下列图形中,既是中心对称图形也是轴对称图形的是( )ABCD9、如图,AB是的直径,CD是的弦,且,则图中阴影部分的面积为( )ABCD10、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,O
4、的半径为2,ABC是O的内接三角形,连接OB、OC,若弦BC的长度为,则BAC_度2、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是_3、一个盒子中装有标号为,的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于的概率为_4、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_5、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红黑的概率是_三、
5、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD是正方形ABE是等边三角形,M为对角线 BD(不含B,D点)上任意一点,将线段BM绕点B逆时针旋转60得到BN,连接 EN,AM、CM请判断线段 AM 和线段 EN 的数量关系,并说明理由 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,正方形ABCD是半径为R的O内接四边形,R6,求正方形ABCD的边长和边心距3、在平面内,给定不在同一直线上的点A,B,C,如图所示点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,ABC的平分线交图形G于点D,连接AD,CD求证:AD=CD4、如图,A
6、B是的直径,CD是的一条弦,且于点E(1)求证:;(2)若,求的半径5、如图,在66的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,A,B两点均在格点上请按要求在图,图,图中画图:(1)在图中,画等腰ABC,使AB为腰,点C在格点上(2)在图中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,C,D两点均在格点上(3)在图中,画ABC,使ACB=90,面积为5,点C在格点上-参考答案-一、单选题1、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角)
7、,找到旋转角,求出其度数【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120故选C【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键2、C 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键3、C【分析】根据从左边看得到的图形是左视图解答即可【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确故选C【点睛】本题主要考查了简单组合体的三视图
8、,掌握三视图的定义成为解答本题的关键4、C【分析】利用俯视图,写出符合题意的小正方体的个数,即可判断【详解】A、当7个小正方体如图分布时,符合题意,本选项不符合题意B、当7个小正方体如图分布时,符合题意,本选项不符合题意C、没有符合题意的几何图形,本选项符合题意D、当7个小正方体如图分布时,符合题意,本选项不符合题意故选:C【点睛】此题考查了从不同的方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力5、D【分析】根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判
9、断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得【详解】解:A、刚到车站,恰好有车进站是随机事件;B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;D、任意画一个三角形,其外角和是360是必然事件;故选D【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念6、B【分析】几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右的每
10、列的小立方体的个数为1,2,1,从上往下的每层的小立方体的个数为1,3,即可求解【详解】解:几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右每列的小立方体的个数为1,2,1,从上往下每层的小立方体的个数为1,3,所以这个几何体从正面看到的平面图形为故选:B【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下
11、面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键7、A【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可【详解】解:A、实心铁球投入水中会沉入水底,是必然事件,该选项符合题意;B、车辆随机到达一个路口,遇到红灯,是随机事件,该选项不合题意;C、打开电视,正在播放大国工匠,是随机事件,该选项不合题意;D、抛掷一枚硬币,正面向上,是随机事件,该选项不合题意;故选:A【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件8、A【分
12、析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意故选:A【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合9、C【分析】如图,连接OC,OD,可知是等边三角形,计算求解即可 线 封 密 内 号学级年名姓 线 封 密 外 【
13、详解】解:如图连接OC,OD是等边三角形由题意知,故选C【点睛】本题考查了扇形的面积,等边三角形等知识解题的关键在于用扇形表示阴影面积10、D【分析】根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),进行计算即可【详解】解:一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,抽到每个球的可能性相同,布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是,P(白球)故选:D【点睛】本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键二、填空题1、60【分析】在RtBOE中,利
14、用勾股定理求得OE=1,知OB=2OE,得到BOE=60,BOC=120,再利用圆周角定理即可解决问题【详解】解:如图作OEBC于EOEBC,BE=EC=,BOE=COE,OE=1,OB=2OE, 线 封 密 内 号学级年名姓 线 封 密 外 OBE=30,BOE=COE=60,BOC=120,BAC=60,故答案为:60【点睛】本题考查三角形的外心与外接圆、圆周角定理垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题2、【分析】绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称
15、的两个点,横坐标、纵坐标分别互为相反数,即可求解【详解】解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是故答案为:【点睛】本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键关于原点对称的两个点,横坐标、纵坐标分别互为相反数3、【分析】根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案【详解】解:根据题意画图如下:共有12种等可能的情况数,其中摸出的小球标号之和大于5的有4种,则摸出的小球标号之和大于5的概率为故答案为:【点睛】本题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,
16、适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验用到的知识点为:概率=所求情况数与总情况数之比4、8【分析】首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可【详解】解:大量重复试验后,发现摸出红球的频率稳定在0.2附近,摸出红球的概率为0.2,由题意,解得:,经检验,是原方程的解,且符合题意, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:8【点睛】本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键5、【分析
17、】根据题意列出表格,可得6种等可能结果,其中一红黑的有4种,再利用概率公式,即可求解【详解】解:根据题意列出表格如下:黑球红球1红球2黑球红球1、黑球红球2、黑球红球1黑球、红球1红球2、红球1红球2黑球、红球2红球1、红球2得到6种等可能结果,其中一红黑的有4种,所以两次摸出的球是一红黑的概率是 故答案为:【点睛】本题主要考查了求概率,能够利用画树状图或列表格的方法解答是解题的关键三、解答题1、AM=EN,理由见解析【分析】根据旋转性质和等边三角形的性质可证得ABM=EBN,BM=BN,AB=BE,根据全等三角形的判定证明ABMEBN即可得出结论【详解】解:AM=EN,理由为:ABE是等边三
18、角形,AB=BE,ABE=60,即EBN=ABN=60,线段BM绕点B逆时针旋转60得到BN,BM=BN,MBN=60,即ABM+ABN=60,ABM=EBN,在ABM和EBN中,ABMEBN(SAS),AM=EN【点睛】本题考查等边三角形的性质、旋转性质、全等三角形的判定与性质,熟练掌握用全等三角形证明线段相等是解答的关键2、边长为,边心距为【分析】过点O作OEBC,垂足为E,利用圆内接四边形的性质求出BOC=90,OBC=45,然后在RtOBE中,根据勾股定理求出OE、BE即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:过点O作OEBC,垂足为E,正方形ABCD是半径为R的
19、O内接四边形,R6,BOC=90,OBC=45,OB=OC=6, BE=OE 在RtOBE中,BEO=90,由勾股定理可得OE2+BE2=OB2,OE2+BE2=36,OE= BE=, BC=2BE=, 即半径为6的圆内接正方形ABCD的边长为,边心距为【点睛】本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于3、见解析【分析】由题意画图,再根据圆周角定理的推论即可得证结论【详解】证明:根据题意作图如下:BD是圆周角ABC的角平分线,ABD=CBD,AD=CD【点睛】本题考查了角,
20、弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键4、(1)见解析;(2)3【分析】(1)根据D=B,BCO=B,代换证明;(2)根据垂径定理,得CE=,利用勾股定理计算即可【详解】(1)证明:OCOB,BCOB;,BD; 线 封 密 内 号学级年名姓 线 封 密 外 BCOD;(2)解:AB是O的直径,且CDAB于点E,CECD,CD,CE,在RtOCE中,OE1,;O的半径为3【点睛】本题考查了圆周角定理,垂径定理,勾股定理,结合图形,熟练运用三个定理是解题的关键5、(1)见解析;(2)见解析;(3)见解析【分析】(1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);(2)作边长为2,高为4的平行四边形即可;(3)根据(1)的结论,作BG边的中线,即可得解【详解】解:(1)如图中,ABC即为所求作(答案不唯一);(2)如图中,平行四边形ABCD即为所求作;(3)如图中,ABC即为所求作(答案不唯一);AB=AG,BC=CG,ACBG,ABG的面积为,ABC的面积为5,且ACB=90【点睛】本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是 线 封 密 内 号学级年名姓 线 封 密 外 理解题意,灵活运用所学知识解决问题