《2021-2022学年度强化训练沪科版九年级数学下册第25章投影与视图章节练习练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练沪科版九年级数学下册第25章投影与视图章节练习练习题(含详解).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第25章投影与视图章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某几何体从三个方向看到的平面图形都相同,这个几何体可以是( )ABCD2、下列几何体中,其三视图完全相同的是(
2、 )ABCD3、如图,由5个完全一样的小正方体组成的几何体的左视图是( )ABCD4、如图,一个水晶球摆件,它是由一个长方体和一个球体组成的几何体,则其主视图是()ABCD5、一个由5个相同的正方体组成的立体图形,如图所示,则这个立体图形的左视图是()ABCD6、把7个同样大小的正方体形状的积木堆放在桌子上,从正面和左面看到的形状图都是如图所示的同样的图形,则其从上面看到的形状图不可能是()ABCD7、如图,是空心圆柱体,其主视图是下列图中的( )ABCD8、如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,小方行走
3、的路程AC()A7.2B6.6C5.7D7.59、四个相同的小正方体组成的立体图形如图所示,它的主视图为( )ABCD10、一个几何体的三视图如图所示,这个几何体是()A圆柱B棱柱C圆锥D球第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正三棱柱的三视图如图所示,若这个正三棱柱的侧面积为12,则a的值_2、用若干个相同的小立方块搭建一个几何体,使从它的正面和上面看到的图形如图所示,动手搭一搭,最多和最少需要的小立方块相差_个3、图2是图1中长方体的三视图,用S表示面积,S主x2+2x,S左x2+x,则S俯_4、如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由
4、矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为_厘米5、一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,则该几何体至少是用 _个小立方块搭成的三、解答题(5小题,每小题10分,共计50分)1、用棱长都为5cm的小立方块搭成几何体,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数(1)请你分别画出从正面和从左面看到的这个几何体的形状图;(2)若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加大小相同的小立方块,以搭成一个大正方体,至少还需要_个小立方
5、块;(3)图中的几何体的表面积(包括与桌面接触的部分)为_;若新搭一个几何体,且满足如下三个条件:图中从上面看到的几何体的形状图不变,小立方块的总数不变,从上面看到的小正方形中的数字可以改变,则新搭几何体的表面积(包括与桌面接触的部分)最小值和最大值分别为_,_2、如图是用10块完全相同的小正方体搭成的几何体(1)请在方格中画出它的三个视图;(2)如果只看三视图,这个几何体还有可能是用_块小正方体搭成的3、如图是由5个同样大小的小正方体搭成的几何体,请在下面方格纸中分别画出这个几何体从正面看、从左面看、从上面看的形状图4、一个几何体的三种视图如图所示(1)这个几何体的名称是_;(2)求这个几何
6、体的表面积;(3)求这个几何体的体积5、如图,是由一些棱长为1cm的小正方体组成的简单几何体(1)请直接写出该几何体的表面积(含下底面)为 (2)从正面看到的平面图形如图所示,请在下面方格中分别画出从左向右、从上向下看到的平面图形-参考答案-一、单选题1、C【分析】根据三视图判断即可;【详解】的左视图、主视图是三角形,俯视图是圆,故A不符合题意;的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;的主视图、左视图、俯视图都是正方形,故C符合题意;的左视图、主视图是长方形,俯视图是圆,故D不符合题意;故选C【点睛】本题主要考查了几何体三视图的判断,准确分析是解题的关键2、A【分析】找到从物
7、体正面、左面和上面看得到的图形全等的几何体即可【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、四棱锥的俯视图与主视图和左视图不同,错误;D、圆锥的俯视图与主视图和左视图不同,错误;故选A【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体3、B【分析】根据从左边看得到的图形是左视图,可得答案【详解】解:从从左边看有2列两层,2列从左到右分别有2、1个小正方形,故选:B【点睛】本题考查了简单组合体的三视图,解题的关键是从左边看得到的图形是左视图4、D【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看下边是一个
8、矩形,矩形的上边是一个圆,故选:D【点睛】本题考查了简单组合体的三视图,掌握从正面看得到的图形是主视图是解决此题关键5、A【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中【详解】解:从左面看易得有两列,从左到右小正方形的个数分别为3,1故选:A【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图6、C【分析】利用俯视图,写出符合题意的小正方体的个数,即可判断【详解】A、当7个小正方体如图分布时,符合题意,本选项不符合题意B、当7个小正方体如图分布时,符合题意,本选项不符合题意C、没有符合题意的几何图形,本选项符合题意D、当7个小正方体如图分布时,符合题意,
9、本选项不符合题意故选:C【点睛】此题考查了从不同的方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力7、C【分析】从正面观察空心圆柱体,能够看见的部分用实线表示,不能看见的部分用虚线表示,即可得到主视图.【详解】主视图是在几何体正面面观察物体得到的图形能够看见的部分用实线表示,不能看见的部分用虚线表示本题圆柱体的主视图整体是个矩形,中间包含两条竖直的虚线故选:C【点睛】本题主要考查三视图, 主视图是在物体正面从前向后观察物体得到的图形;俯视图是在水平面内从上向下观察物体得到的图形;左视图是在几何体左侧面观察物体得到的图形8、D【分析】设出影长AB的长,利用相似三角形可以求得AB的长,然
10、后在利用相似三角形求得AC的长即可【详解】解:AEOD,OGOD,AE/OG,AEB=OGB,EAB=GOB,AEBOGB,即 ,解得:AB2m;OA所在的直线行走到点C时,人影长度增长3米,DCAB+3=5m,OD=OA+AC+CD=AC+10,FCGO,CFD=OGD,FCD=GOD,DFCDGO,即,解得:AC7.5m所以小方行走的路程为7.5m故选择:D【点睛】本题主要考查的是相似三角形在实际中的中心投影的应用,掌握相似三角形判断与性质,利用对应边成比例是解答本题的关键9、A【分析】根据几何体的三视图解答即可【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故选:【点睛】本
11、题考查了三视图的知识,主视图是从物体的正面看得到的视图10、A【分析】根据三视图判断几何体的形状即可;【详解】由已知三视图可知,主视图、左视图为长方形,俯视图为圆,则符合条件的立体图形是圆柱;故选A【点睛】本题主要考查了三视图的判断,准确分析是解题的关键二、填空题1、【分析】观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,根据勾股定理可得底面边长为a,根据长方形的面积公式和这个正三棱柱的侧面积为12,可得关于a的方程,解方程即可求得a的值【详解】解:观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,则底面边长为a,依题意有a23=12,解得a=故答案为
12、:【点睛】此题考查了由三视图判断几何体,关键是由三视图得到正三棱柱的高和底面边长2、5【分析】根据正面看与上面看的图形,得到俯视图中最左的一列都为3层,第2列都为2层,第3列为1层,得到最多共3+3+3+2+2+1=14个小正方体,再根据正面看与上面看的图形,得到俯视图中的第1列只有一处为3层,其余为1层,分三种情况考虑:最底层为3层,中间为3层,上面为3层;第2列只有一处为2层,上面或下面;第3列为1层,最少需要1+1+3+1+2+1=9个小正方体【详解】解:由题意可得:最多需要14个小正方体,最少需要9个正方体,相差14-9=5个,故答案为:5【点睛】本题考查几何体的三视图由几何体的俯视图
13、及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字3、x2+4x+3【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案【详解】S主=x2+3x=x(x+3),S左=x2+x=x(x+1),俯视图的长为x+3,宽为x+1,则俯视图的面积S俯=(x+3)(x+1)=x2+4x+3,故答案为:x2+4x+3【点睛】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,
14、以及几何体的长、宽、高4、【分析】由正视图可知,高是20cm,两顶点之间的最大距离为60cm,利用正六边形的性质求得底面AD,然后所有棱长相加即可【详解】根据题意,作出实际图形的上底,如图:AC,CD是上底面的两边,因为正六边形的直径为60cm,则AC=602=30(cm),ACD=120,作CBAD于点B,那么AB=ACsin60=30=15(cm),所以AD=2AB=30(cm),胶带的长至少=(cm)故答案为:【点睛】本题考查了正六边形的性质、立体图形的三视图和学生的空间想象能力;注意知道正六边形两个顶点间的最大距离求对边之间的距离需构造直角三角形利用相应的三角函数求解5、6【分析】根据
15、题意可以得到该几何体从正面和上面看至少有多少个小立方体,综合考虑即可解答本题【详解】解:从正面看至少有三个小立方体且有两层;从上面看至少有五个小立方体,且有两列;只需要保证从正面看的上面一层有一个,从上面看有五个小立方体即可满足题意,最少是用6个小立方块搭成的,故答案为:6【点睛】此题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案三、解答题1、(1)见解析;(2)12;(3)1400;1250,1550【分析】(1)根据三视图可画出几何体的形状图;(2)根据正方体的性质,每行每列的小正方体
16、都相等,都是3个,这样正方体的小正方体的个数应该为27个,现在已有15个,这样再补12个即可;(3)从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最小时,每个位置数量尽量相等,可见解析中图,按图计算即可;从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最大时,每个位置数量尽量相差最大,可见解析中图,按图计算即可【详解】解:(1)由已知可得:(2)根据正方体的性质,每行每列都是3个小正方体,已知有(个)(个),故答案为:12;(3)小正方体的棱长为5cm,小正方形的面积为,几何体表面积为,故答案为:;如图搭建此时表面积为最小,几何体最小表面积为;如图搭建此时表面积为最大,几
17、何体最大表面积为;故答案为:,【点睛】本题考查了几何体的三视图,根据三视图计数,计算表面积,根据小正方体的数量计算表面积是本题的难点,了解什么情况表面积最小,什么情况表面积最大是解题关键2、(1)见解析;(2)9或11【分析】(1)根据三视图的定义画图即可;(2)从俯视图看,最下面一层有6个小正方体,从正视图和左视图看,最上面一层只有1个小立方体,中间一层最少有2个小正方体,最多有4个小立方体,由此即可得到答案【详解】(1)画出的三视图如图所示:(2)从俯视图看,最下面一层有6个小正方体,从正视图和左视图看,最上面一层只有1个小立方体,中间一层最少有2个小正方体,最多有4个小立方体,这个几何体
18、还可以由9个或11个小正方体组成【点睛】本题主要考查了画小立方体组成的几何体的三视图,由三视图求小立方体个数,解题的关键在于能够正确观察图形求解3、见解析【分析】根据图形及三视图的定义作图即可【详解】解:三视图如下所示: 【点睛】此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键4、(1)圆柱体;(2)这个几何体的表面积为;(3)这个几何体的体积为【分析】(1)根据这个几何体的三视图即可求解;(2)根据三视图可得到圆柱的高为6,底面半径为2,然后根据圆柱的表面积等于侧面积加两个底面积求解即可;(3)根据圆柱的体积等于底面积高求解即可【详解】
19、解:(1)由图可得,主视图是长方形,左视图是长方形,俯视图是圆,这个几何体是圆柱体,故答案是:圆柱体;(2)由三视图可得,圆柱的高为6,底面半径为2,这个圆柱的表面积底面积2+侧面积;(3)这个圆柱的体积底面积高【点睛】此题考查了几何体的三视图,求圆柱的表面积和体积,解题的关键是熟练掌握三视图的表示方法以及圆柱的表面积和体积公式5、(1)34 ;(2)见解析【分析】(1)先计算出每个小正方体一个面的面积,然后求出一共露在外面的面有多少个即可得到答案;(2)根据三视图的画法作图即可【详解】解:(1)每个小正方体的棱长为,每个小正方体的一个面的面积为,从上面看露在外面的小正方体的面有6个,从底面看露在外面的面有6个,从正面看,露在外面的面有6个,从后面看,露在外面的面有6个,从左面看,露在外面的面有4个,从右面看,露在外面的面有4个,然后在最下层,第二行第二列的小正方体右边1个面露在外面,第二行第四列的小正方体左边一个面露在外面,露在外面的面一共有34个,该几个体的表面积为,故答案为:;(2)如图所示,即为所求;【点睛】本题主要考查了简单几何体的表面积和画三视图,解题的关键在于能够熟练掌握相关知识进行求解