《2021-2022学年人教版七年级数学下册第五章相交线与平行线定向测评试题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版七年级数学下册第五章相交线与平行线定向测评试题.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章相交线与平行线定向测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列说法中,真命题的个数为( )两条平行线被第三条直线所截,同位角相等;在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行;过一点有且只有一条直线与这条直线平行;点到直线的距离是这一点到直线的垂线段;A1个B2个C3个D4个2、已知的两边分别平行于的两边若60,则的大小为()A30B60C30或60D60或1203、在下列各题中,属于尺规作图的是( )A用直尺画一工件边缘的垂线B用直尺
2、和三角板画平行线C利用三角板画的角D用圆规在已知直线上截取一条线段等于已知线段4、下列命题中是真命题的是( )A对顶角相等B两点之间,直线最短C同位角相等D同旁内角互补5、如图,直线AB和CD相交于点O,若AOC125,则BOD等于()A55B125C115D656、命题“如果a0,b0,那么ab0”的逆命题是( )A如果a0,bo,那么ab0B如果ab0,那么a0,b0C如果a0,b0,那么a0D如果ab0,那么a0,b07、如图,平行线AB,CD被直线AE所截若1=70,则2的度数为( )A80B90C100D1108、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将
3、军沿着AB路线到的河边,他这样做的道理是( )A两点之间,线段最短B两点之间,直线最短C两点确定一条直线D直线外一点与直线上各点连接的所有线段中,垂线段最短9、如图,直线ab,RtABC的直角顶点C在直线b上若150,则2的度数为( )A30B40C50D6010、下列各图中,1与2是对顶角的是()ABCD二、填空题(5小题,每小题4分,共计20分)1、如图,小明同学在练习本上的相互平行的横格上先画了直线,度量出1112,接着他准备在点A处画直线若要使,则2的度数为_度2、将命题“对顶角相等”改为“如果那么”的形式为:_3、在数学课上,王老师提出如下问题:如图,需要在A,B两地和公路l之间修地
4、下管道,请你设计一种最节省材料的修建方案小李同学的作法如下:连接AB;过点A作AC直线l于点C;则折线段BAC为所求王老师说:小李同学的方案是正确的请回答:该方案最节省材料的依据是垂线段最短和_4、如图,P是直线a外一点,点A,B,C,D为直线a上的点,PA=5,PB=4,PC=2,PD=7,根据所给数据写出点P到直线a的距离l的取值范围是_5、如图,已知的面积为16,现将沿直线向右平移个单位到的位置当所扫过的面积为32时,那么的值为_三、解答题(5小题,每小题10分,共计50分)1、已知,在下列各图中,点O为直线AB上一点,AOC60,直角三角板的直角顶点放在点O处(1)如图1,三角板一边O
5、M在射线OB上,另一边ON在直线AB的下方,则BOC的度数为 ,CON的度数为 ;(2)如图2,三角板一边OM恰好在BOC的角平分线OE上,另一边ON在直线AB的下方,此时BON的度数为 ;(3)在图2中,延长线段NO得到射线OD,如图3,则AOD的度数为 ;DOC与BON的数量关系是DOC BON(填“”、“”或“”);(4)如图4,MNAB,ON在AOC的内部,若另一边OM在直线AB的下方,则COM+AON的度数为 ;AOMCON的度数为 2、完成下列证明:已知,垂足分别为、,且,求证证明:,(已知),( )( )( )又(已知)( )( )3、小明同学遇到这样一个问题:如图,已知:ABC
6、D,E为AB、CD之间一点,连接BE,ED,得到BED求证:BEDB+D小亮帮助小明给出了该问的证明证明:过点E作EFAB则有BEFBABCDEFCDFEDDBEDBEF+FEDB+D请你参考小亮的思考问题的方法,解决问题:(1)直线l1l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图,若点P在线段CD上,PAC15,PBD40,求APB的度数(2)拓展:如图,若点P在直线EF上,连接PA、PB(BDAC),直接写出PAC、APB、PBD之间的数量关系4、如图所示,M、N是直线AB上两点,12,问1与2,3与4是对顶角吗? 1与5,3与6是邻补角吗?
7、5、如图,直线AB、CD相交于点O,EOC90,OF是AOE的角平分线,COF34,求BOD的度数-参考答案-一、单选题1、B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】两条平行线被第三条直线所截,同位角相等,故是真命题;在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故是真命题;在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故不是真命题, 点到直线的距离是这一点到直线的垂线段的长度,故不是真命题,故真命题是,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键2、D【分析
8、】根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出1,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,+2180,再根据两直线平行,内错角相等,2,即可得出答案【详解】解:如图1,ab,1,cd,160;如图(2),ab,+2180,cd,2,+180,60,120综上,60或120故选:D【点睛】本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键3、D【分析】根据尺规作图的定义:用没有刻度的直尺和圆规作图,只使用圆规和直尺来解决平面几何作图,进行逐一判断即可【详解】解:A、用直尺画一工件边缘的垂线,这里没有用到圆规,故此选项不符合题意
9、;B、用直尺和三角板画平行线,这里没有用到圆规,故此选项不符合题意;C、利用三角板画45的角,这里没有用到圆规,故此选项不符合题意;D、用圆规在已知直线上截取一条线段等于已知线段,是尺规作图,故此选项符合题意;故选D【点睛】本题主要考查了尺规作图的定义,解题的关键在于熟知定义4、A【分析】根据对顶角相等,两点之间,线段最短,两直线平行,同位角相等,同旁内角互补进行判断求解即可【详解】解:A、对顶角相等,是真命题,符合题意;B、两点之间,直线最短,是假命题,应该是两点之间,线段最短,不符合题意;C、同位角相等,是假命题,应该是两直线平行,同位角相等,不符合题意;D、同旁内角互补,是假命题,应该是
10、两直线平行,同旁内角互补,不符合题意;故选A【点睛】本题主要考查了判断命题真假,解题的关键在于能够熟知相关定义和定理5、B【分析】根据对顶角相等即可求解【详解】解:直线AB和CD相交于点O,AOC125,BOD等于125故选B【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键6、B【分析】根据互逆命题概念解答即可【详解】解:命题“如果a0,b0,那么ab0”的逆命题是“如果ab0,那么a0,b0”,故选:B【点睛】本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题其中一个命题称为另
11、一个命题的逆命题7、D【分析】直接利用对顶角以及平行线的性质分析得出答案【详解】解:170,1370,ABDC,23180,218070110故答案为:D【点睛】此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键8、D【分析】根据垂线段最短即可完成【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键9、B【分析】由平角的定义可求得BCD的度数,再利用平行线的性质即可求得2的度数【详解】解:如图所示:150,AC
12、B90,BCD1801BCD40,ab,2BCD40故选:B【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等10、B【分析】根据对顶角的定义作出判断即可【详解】解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是故选:B【点睛】本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角二、填空题1、68【解析】【分析】根据平行线的性质,得出,根据平行线的判定,得出,即可得到,进而得到的度数【详解】解:练习本的横隔线相互平行,要使,又,即, 故答案为:68【点睛】本题主要考查了平行线的性质与判定
13、条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行2、如果两个角是对顶角,那么这两个角相等【解析】【分析】先找到命题的题设和结论,再写成“如果,那么”的形式【详解】解:原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,命题“对顶角相等”写成“如果,那么”的形式为:“如果两个角是对顶角,那么这两个角相等”故答案为:如果两个角是对顶角,那么这两个角相等【点睛】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单3、两点之间线段最短【解析】【分析】根据两点之间线段最短即可得到答案【详
14、解】解:由题意得可知:该方案最节省材料的依据是垂线段最短和两点之间线段最短,故答案为:两点之间线段最短【点睛】本题主要考查了垂线段最短和两点之间线段最短,熟知二者的定义是解题的关键4、0l2【解析】【分析】根据直线外一点与直线上各点连线的所有线段中,垂线段最短解答即可【详解】解:点P为直线外一点,点A、B、C、D直线a上不同的点, 直线外一点与直线上各点连线的所有线段中,垂线段最短 点P到直线a的距离l小于等于2, 故答案为:0l2【点睛】本题考查点到直线的距离、垂线段最短,熟知直线外一点与直线上各点连线的所有线段中,垂线段最短是解答的关键5、4【解析】【分析】作AHBC于H,根据ABC的面积
15、为16,BC=8,可先求出AH的长,ABC所扫过的面积为32,即可求出a的值.【详解】解:如图,连接AD,过点A作AHBC交BC于H.SABC=16, BC=8, 即BCAH= 8AH=16,AH=4,S梯形 ABFD= a=4,故答案为4.【点睛】本题考查了图形的平移,灵活运用图形面积间的关系是解题的关键.三、解答题1、(1)120;150;(2)30;(3)30,=;(4)150;30【分析】(1)根据AOC=60,利用两角互补可得BOC=18060=120,根据AON=90,利用两角和CON=AOC+AON即可得出结论;(2)根据OM平分BOC,可得出BOM=60,由BOM+BON=MO
16、N=90可求得BON的度数;(3)根据对顶角求出AOD=30,根据AOC=60,可得DOC=AOCAOD=6030=30=BON(4)根据垂直可得AON与MNO互余,根据MNO=60(三角板里面的60角),可求AON=9060=30,根据AOC=60,求出CON=AOCAON=6030=30即可【详解】解:(1)AOC=60,BOC与AOC互补,AON=90,BOC=18060=120,CON=AOC+AON=60+90=150故答案为120;150;(2)三角板一边OM恰好在BOC的角平分线OE上,由(1)得BOC=120,BOM=BOC=60,又MON=BOM+BON=90,BON=906
17、0=30故答案为30;(3)AOD=BON(对顶角),BON=30,AOD=30,又AOC=60,DOC=AOCAOD=6030=30=BON故答案为30,=;(4)MNAB,AON与MNO互余,MNO=60(三角板里面的60角),AON=9060=30,AOC=60,CON=AOCAON=6030=30,COM+AON=MON+2CON=90+230=150,AOMCON=MON2CON=90230=30故答案为150;30【点睛】本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键2、见详解【分析】根据
18、垂直的定义及平行线的性质与判定可直接进行求解【详解】证明:,(已知),(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(等量代换)(内错角相等,两直线平行)【点睛】本题主要考查垂直的定义及平行线的性质与判定,熟练掌握垂直的定义及平行线的性质与判定是解题的关键3、(1)55;(2)当P在线段CD上时,APB=PAC +PBD;当P在DC延长线上时,APB=PBD-PAC;当P在CD延长线上时,APB=PAC-PBD;【分析】(1)过点P作PGl1,可得APG=PAC=15,由l1l2,可得PGl2,则BPG=PBD=40,即可得到APB=APG+BPG=55;(2)分
19、当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可【详解】解:(1)如图所示,过点P作PGl1,APG=PAC=15,l1l2,PGl2,BPG=PBD=40,APB=APG+BPG=55;(2)由(1)可得当P在线段CD上时,APB=PAC +PBD;如图1所示,当P在DC延长线上时,过点P作PGl1,APG=PAC,l1l2,PGl2,BPG=PBD=40,APB=BPG-APG=PBD-PAC;如图2所示,当P在CD延长线上时,过点P作PGl1,APG=PAC,l1l2,PGl2,BPG=PBD=40,APB=APG-BPG=PAC-PBD;综上所述,当
20、P在线段CD上时,APB=PAC +PBD;当P在DC延长线上时,APB=PBD-PAC;当P在CD延长线上时,APB=PAC-PBD【点睛】本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质4、1和2,3和4都不是对顶角,1与5,3与6也都不是邻补角【分析】根据对顶角和邻补角的定义求解即可【详解】解:根据对顶角的定义可得:1和2,3和4都不是对顶角;根据邻补角的定义可得,1与5,3与6也都不是邻补角【点睛】此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。5、【分析】根据、可得,OF是AOE的角平分线,可得,所以,再根据对顶角相等,即可求解【详解】解:、,OF是AOE的角平分线,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系