《2021-2022学年度北师大版七年级数学下册第六章概率初步专题攻克试题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版七年级数学下册第六章概率初步专题攻克试题(含详解).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第六章概率初步专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、标标抛掷一枚点数从16的正方体骰子12次,有7次6点朝上当他抛第13次时, 6点朝上的概率为( )ABCD2、下
2、列事件是必然事件的是()A小明1000米跑步测试满分B抛掷一枚均匀的硬币100次,正面朝上的次数为50次C13个人参加一个集会,他们中至少有两个人的出生月份是相同的D太阳从西方升起3、如图,正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )ABCD4、 “抚顺市明天降雪的概率是70%”,对此消息,下列说法中正确的是()A抚顺市明天将有70%的地区降雪B抚顺市明天将有70%的时间降雪C抚顺市明天降雪的可能性较大D抚顺市明天肯定不降雪5、下列事件,你认为是必然事件的是( )A打开电视机,正在播广告B今天星期二,
3、明天星期三C今年的正月初一,天气一定是晴天D一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的6、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为()ABCD7、现有4条线段,长度依次是2、5、7、8,从中任选三条,能组成三角形的概率是( )ABCD8、一个不透明的袋子中有2个红球,3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是红球的概率为( )ABCD9、某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是()A从标有1,2,3,4,5
4、,6 的六张卡片中任抽一张,出现偶数B从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球C一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃D掷一个质地均匀的正六面体骰子,向上的面点数是410、下列说法中错误的是( )A抛掷一枚质地均匀的硬币,落地后“正面朝上”和“反面朝上”是等可能的B甲、乙两地之间质地均匀的电缆有一处断点,断点出现在电缆的各个位置是等可能的C抛掷一枚质地均匀的骰子,“朝上一面的点数是奇数”和“朝上一面的点数是偶数”是等可能的D一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,“摸到白球”和“摸到红球”是等可能的第卷(
5、非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从分别写有2,4,5,6的四张卡片中任取一张,卡片上的数是偶数的概率为_2、不透明的袋子里装有红球2个,绿球1个,除颜色外无其他差别,每次摸球前先将球摇匀,摸出一个后记下颜色再放回袋中,连续摸球两次为一红一绿的概率是 _3、真实惠举行抽奖活动,在一个封闭的盒子里有400张形状一模一样的纸片,其中有20张是一等奖,摸到二等奖的概率是10,摸到三等奖的概率是20%,剩下是“谢谢惠顾”,则盒子中有“谢谢惠顾”_张4、从1副扑克牌(共54张)中随机抽取1张,下列事件:抽到大王;抽到黑桃;抽到黑色的其中,最有可能发生的事件是 _(填写序号
6、)5、如图是一个转盘,转盘上共有红、白两种不同的颜色,已知红色区域的圆心角为110,自由转动转盘,指针落在白色区域的概率是_三、解答题(5小题,每小题10分,共计50分)1、如图,现有一个均匀的转盘被平均分成六等份,分别标有2,3,4,5,6,7这六个数字,自由转动转盘,当转盘停止时,指针指向的数字即为转出的数字(若指针恰好指在分界线上,则重新转动转盘)(1)求转出的数字大于3的概率;(2)小明和小凡做游戏自由转动转盘,转出的数字是偶数小明获胜,转出的数字是奇数小凡获胜,这个游戏对双方公平吗?请说明理由2、在不透明的袋子里装有10个乒乓球,其中有2个是黄色的,3个是红色的,其余全是白色的,先拿
7、出每种颜色的乒乓球各一个(不放回),再任意拿出一个乒乓球是红色的概率是多少?3、端午节吃粽子是中华民族的传统习俗.据了解,甲厂家生产,三个品种的盒装粽子,乙厂家生产,两个品种的盒装粽子.端午节前,某商场在甲、乙两个厂家中各选购一个品种的盒装粽子销售.(1)试用画树状图或列表的方法写出所有选购方案.(2)求甲厂家的品种粽子被选中的概率.4、一个不透明的口袋中放有290个涂有红、黑、白三种颜色的质地相同的球已知红球的个数比黑球的2倍多40个,从袋中任取一个球是黑球的概率是(1)袋中红球的个数是_个;(2)求从袋中任取一个球是白球的概率5、一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”
8、“4”“5”“5”掷小正方体后,观察朝上一面的数字(1)出现“5”的概率是多少?(2)出现“6”的概率是多少?(3)出现奇数的概率是多少?-参考答案-一、单选题1、D【分析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】解:掷一颗均匀的骰子(正方体,各面标这6个数字),一共有6种等可能的情况,其中6点朝上只有一种情况,所以6点朝上的概率为故选:D【点睛】本题考查概率的求法与运用,解题的关键是掌握一般方法:如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)2、C【分析】根据必然事件的定义:事先
9、能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件进行判断即可【详解】解:A、小明1000米跑步测试满分这是随机事件,故此选项不符合题意;B、投掷一枚均匀的硬币100次,正面朝上的次数为50次是随机事件,故此选项不符合题意;C、13个人参加一个集会,他们中至少有两个人的出生月份是相同的,属于必然事件,故此选项符合题意;D太阳从西方升起,属于不可能事件,故此选项不符合题意;故选C【点睛】本题主要考查了随机事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件,一定会发生的是必然事件,一定不会发生的是不可能事件3、B【分析】根据题意,涂黑一个格共6种等可能情况
10、,结合轴对称的意义,可得到轴对称图形的情况数目,结合概率的计算公式,计算可得答案【详解】解:如图所示:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,只有4种是轴对称图形,分别标有1,2,3,4;使黑色部分的图形仍然构成一个轴对称图形的概率是:故选:B【点睛】本题考查几何概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)4、C【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1【详解】解:“抚顺市明天降雪的概率是70%”,
11、正确的意思是:抚顺市明天降雪的机会是70%,明天降雪的可能性较大故选C【点睛】本题考查概率的意义,解题关键是理解概率的意义反映的只是这一事件发生的可能性的大小5、B【分析】必然事件就是一定发生的事件,依据定义即可作出判断【详解】解:A、是随机事件,故此选项不符合题意;B、是必然事件,故此选项符合题意;C、是随机事件,故此选项不符合题意;D、是随机事件,故此选项不符合题意;故选:B【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件6、C【分
12、析】从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可【详解】解:装有7个只有颜色不同的球,其中4个黑球,从布袋中随机摸出一个球,摸出的球是黑球的概率故选:C【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键7、A【分析】先找出从中任选三条的所有可能的结果,再根据三角形的三边关系定理找出能组成三角形的结果,然后利用概率公式即可得【详解】解:由题意,从这4条线段中任选三条共有4种结果,即、,由三角形的三边关系定理可知,能组成三角形的有2种结果,即和,则所求的概率为,故选:A【点
13、睛】本题考查了求概率,熟练掌握等可能性下的概率计算方法是解题关键8、D【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】解:根据题意可得:个不透明的袋子中有2个红球、3个黄球和4个蓝球,共9个,从袋子中随机摸出一个球,它是红色球的概率为 ,故选:D【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)9、B【分析】由图象可知,该实验的概率趋近于0.3-0.4之间,依次判断选项所对应实验的概率即可【详解】A.从标有1,2,3,4,5,6 的六张卡片中任抽一张,出现偶数,概
14、率为,选项与题意不符,故错误B.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球,概率为,选项与题意符合,故正确C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃,选项与题意不符,故错误D.掷一个质地均匀的正六面体骰子,向上的面点数是4,概率为,选项与题意不符,故错误故选:B【点睛】本题考察了用频率估计概率,当实验次数足够多时,出现结果的频率可以看作是该结果出现的概率,本题通过图象可以估计出概率的范围,再依次判断各选项即可10、D【分析】根据随机事件发生的可能性结合概率公式分别对每一项进行分析,即可得出答案【详解】解:A、抛掷一枚质地均匀的硬币,落地后“正面朝上”和“反
15、面朝上”的概率是相等的,是等可能的,正确,不符合题意;B、甲、乙两地之间质地均匀的电缆有一处断点,断点出现在电缆的各个位置上的概率相同,是等可能的,正确,不符合题意;C、抛掷一枚质地均匀的骰子,“朝上一面的点数是奇数”和“朝上一面的点数是偶数”的概率是相等的,是等可能的,正确,不符合题意;D、一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,“摸到白球”的概率大于“摸到红球”的概率,故本选项错误,符合题意;故选:D【点睛】本题考查的是随机事件发生的可能性的大小,概率的含义,掌握“等可能事件的理解”是解题的关键.二、填空题1、【分析】根据概率的求法,让是偶
16、数的卡片数除以总卡片数即为所求的概率【详解】解答:解:四张卡片上分别标有数字2,4,5,6,其中有2,4,6,共3张是偶数,从中随机抽取一张,卡片上的数字是偶数的概率为,故答案为:【点睛】点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)2、【分析】根据概率公式计算概率即可【详解】解:列表如下:红红绿红(红,红)(红,红)(绿,红)红(红,红)(红,红)(绿,红)绿(红,绿)(红,绿)(绿,绿)由表知,共有9种等可能结果,其中连续摸球两次为一红一绿的有4种结果,所以连续摸球两次为一红一绿的概率为,故答案为:【点睛
17、】本题考查了概率的计算,正确画出表格是解题关键3、260【分析】先求出一等奖的概率,然后利用频数=总数概率求解即可【详解】解:由题意得:一等奖的概率=,盒子中有“谢谢惠顾”张,故答案为:260【点睛】本题主要考查了利用概率求频数,解题的关键在于能够熟练掌握频数=总数概率4、【分析】根据1副扑克牌(共54张)中的构成情况进行判断即可【详解】解:1副扑克牌(共54张)中,“大王”只有1张,“黑桃”有13张,“黑色”的是“黑桃与梅花的和”有26张,因此模到“黑色”的可能性大,故答案为:【点睛】本题考查随机事件发生的可能性,知道“大王”“黑桃”“黑色的”在1副扑克牌(共54张)中所占的比例是正确判断的
18、关键5、【分析】先求出白色区域的圆心角,再利用概率公式即可求解【详解】红色区域的圆心角为110,白色区域的圆心角为250,指针落在白色区域的概率=故答案是:【点睛】本题主要考查几何概率,掌握概率公式是解题的关键三、解答题1、(1);(2)公平,理由见解析【分析】(1)转出的数字有6种结果,求转出的数字大于3的结果数,即可求解;(2)分别求出小明和小凡获胜的概率,即可判定【详解】解:转出的数字有6种结果,并且每种结果出现的可能性相同(1)转出的数字大于3有4种结果,4、5、6、7所以,P(转出的数字大于3)(2)小明获胜有3种结果,小凡获胜有3种结果P(小明获胜)=,P(小凡获胜)=因为小明和小
19、凡获胜的概率相同,所以这个游戏对双方公平【点睛】此题考查了概率的有关求解,熟练掌握概率的求解公式是解题的关键2、【分析】根据剩下7个小球拿一个的可能性有7种,其中红球的可能性是2种即可求解【详解】解:先拿出每种颜色的乒乓球各一个(不放回),则还剩下7个小球,其中红色的球2个,剩下7个小球拿一个的可能性有7种,其中红球的可能性是2种,再任意拿出一个乒乓球是红色的概率是 【点睛】本题主要考查了概率的计算,用到的知识点为:概率所求情况数与总情况数之比3、(1)6种方案;(2)甲厂家的品种粽子被选中的概率是.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得甲
20、厂家的B品种粽子被选中的情况,再利用概率公式即可求得答案【详解】解:(1)画树状图如下:一共有6种选购方案,分别是AD、AE、BD、BE、CD、CE,(2)(品种粽子被选中).答:甲厂家的品种粽子被选中的概率是【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比4、(1)200;(2)【分析】(1)直接根据从袋中任取一个球是黑球的概率是,得出黑球的个数,进而利用红球的个数比黑球的2倍多40个,求出答案;(2)利用白球个数除以总数得出答案【
21、详解】一个不透明的口袋中放有290个涂有红、黑、白三种颜色的质地相同的球,从袋中任取一个球是黑球的概率是,黑球的个数为:(个),已知红球的个数比黑球的2倍多40个,故答案为:(2)白球的个数是从袋中任取一个球是白球的概率为【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键5、(1)出现“5”的概率是;(2)出现“6”的概率是0;(3)出现奇数的概率是【分析】(1)根据出现的机会有两次,再利用概率公式计算即可;(2)根据出现的机会没有,可得出现是不可能事件,从而可得其概率;(3)根据出现奇数的机会有四次,再利用概率公式计算即可.【详解】解:(1)因为出现的机会有两次,所以出现“5”的概率是:,(2)因为出现的机会没有,所以出现“6”的概率是:,(3)因为出现奇数的机会有四次,所以出现奇数的概率是【点睛】本题考查的是概率的含义与计算,掌握概率的计算方法是解题的关键.