《2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数综合测评试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数综合测评试卷(含答案解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版(上海)七年级数学第二学期第十二章实数综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列四个选项中,数值最接近的是( )A2B3C4D52、下列各数是无理数的是( )A3BC2.1211
2、21112D3、下列说法中正确的有()2都是8的立方根 x的平方根是3 2A1个B2个C3个D4个4、有一个数值转换器,原理如下:当输入的x为64时,输出的y是( )AB2CD5、在3,0,2,这组数中,最小的数是()AB3C0D26、下列说法正确的是( )A0.01是0.1的平方根 B小于0.5C的小数部分是D任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方如此进行下去,得到的数会越来越趋近17、已知a,b|,c(2)3,则a,b,c的大小关系是( )AbacBbcaCcbaDacb8、一个正数的两个平方根分别是2a与,则a的值为( )A1B1C2D29、若一个数的算术平方根与
3、它的立方根的值相同,则这个数是( )A1B0和1C0D非负数10、16的平方根是()A8B8C4D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若|2y+1|=0,则xy2的值是_2、已知x、y满足关系式0,则xy的算术平方根为_3、比较大小:|4|_(填“”、“”或“”)4、的整数部分是_5、当_ 时,分式的值为零三、解答题(10小题,每小题5分,共计50分)1、我们知道,假分数可以化为整数与真分数的和的形式例如:=1+ 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”例如:像
4、,这样的分式是假分式;像,这样的分式是真分式类似的,假分式也可以化为整式与真分式的和的形式 例如:;解决下列问题:(1)写出一个假分式为: ;(2)将分式化为整式与真分式的和的形式为: ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值2、大家知道是无理数,而无理数是无限不循环小数因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分因为的整数部分为1,所以的小数部分为参考小燕同学的做法,解答下列问题:(1)写出的小数部分为_;(2)已知与的小数部分分别为a和b,求a22abb2的值;(3)如果,其中x是整数,0y1
5、,那么_(4)设无理数(m为正整数)的整数部分为n,那么的小数部分为_(用含m,n的式子表示)3、如图1,依次连接22方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为(1)图1中阴影正方形的边长为 ;点P表示的实数为 ;(2)如图2,在44方格中阴影正方形的边长为a写出边长a的值请仿照(1)中的作图在数轴上表示实数a+14、计算:(1);(2)5、已知a、b互为倒数,c、d互为相反数,求(cd)21的值6、已知a216,b327,求ab的值7、解方程:(1)x281;(2)(x1)3278、计算:9、已知x,y满足,求x、y的值10、求下列各数的算术平
6、方根:(1)0.64 (2)-参考答案-一、单选题1、A【分析】根据无理数的估算先判断,进而根据,进而可以判断,即可求得答案【详解】解:,即更接近2故选A【点睛】本题考查了无理数的估算,掌握无理数的估算是解题的关键2、D【分析】根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可【详解】A、-3是整数,属于有理数B、是分数,属于有理数C、2.121121112是有限小数,属于有理数D、是无限不循环小数,属于无理数故选:D【点睛】本题主要是考察无理数的概念,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112,等有规律的数3、B【分析
7、】根据平方根和立方根的定义进行判断即可【详解】解:2是8的立方根,-2不是8的立方根,原说法错误;=x,正确;,9的平方根是3,原说法错误;=2,正确;综上,正确的有共2个,故选:B【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键4、C【分析】直接利用立方根以及算术平方根、无理数分析得出答案【详解】解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是,即故选:C【点睛】本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根5、B【分析】先确定3与的大小,再确定四个数的大小顺序,由此得到答案【详解】解:97,3,-3,-30
8、2,故选:B【点睛】此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键6、C【分析】根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可【详解】解:A、0.1是0.01的平方根,原说法错误,不符合题意;B、由,得,原说法错误,不符合题意;C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;故选:C【点睛】本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键7、C【分析】本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运
9、算是根据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较【详解】解:由题意得:a=,b=,c-8,cba故选:C【点睛】本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键8、D【分析】根据正数有两个平方根,且互为相反数,即可求解【详解】解:根据题意得: ,解得: 故选:D【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的
10、关键9、B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题【详解】解:立方根等于它本身的实数0、1或1,算术平方根等于它本身的数是0和1,一个数的算术平方根与它的立方根的值相同的是0和1,故选B【点睛】主要考查了立方根,算术平方根的性质牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点10、D【分析】根据平方根可直接进行求解【详解】解:(4)216,16的平方根是4故选:D【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键二、填空题1、【分析】先根据算术平方根和绝对值的非负性求出的值,再代
11、入计算即可得【详解】解:,解得,则,故答案为:【点睛】本题考查了算术平方根和绝对值的非负性、代数式求值,熟练掌握算术平方根和绝对值的非负性是解题关键2、4【分析】直接利用算术平方根以及偶次方的性质得出x,y的值,进而得出答案【详解】解:,x+4=0,y-2=0,解得:x=-4,y=2,故xy=(-4)2=16,16的算术平方根是:4故答案为:4【点睛】本题主要考查了算术平方根以及偶次方的性质,正确得出x,y的值是解题关键3、【分析】先化简绝对值,再根据实数的大小比较法则即可得【详解】解:,因为,所以,即,故答案为:【点睛】本题考查了绝对值、实数的大小比较,熟练掌握实数的大小比较法则是解题关键4
12、、3【分析】先估算的近似值,然后进行计算即可【详解】解:,的整数部分是3,故答案为3【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握求一个数的平方5、【分析】由分式的值为0的条件可得:,再解方程与不等式即可得到答案.【详解】解: 分式的值为零, 由得: 由得:且 综上: 故答案为:【点睛】本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.三、解答题1、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案(2)根据题意给出的变形方法即可求出答案(3)先将分式化为真分式与整式的和,然后根据题意即可求出
13、x的值【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一) (2); 故答案为:;(3),x2=1或x2=2,x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型2、(1);(2)1;(3);(4)【分析】(1)由题意易得,则有的整数部分为3,然后问题可求解;(2)由题意易得,则有,然后可得,然后根据完全平方公式可进行求解;(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;(4)根据题意可直接进行求解【详解】解:(1),的整数部分为3,的小数部分为;故答案为;(2),与的小数部分分别为a和b,;(3)由可知,的小数部
14、分为,x是整数,0y1,;故答案为;(4)无理数(m为正整数)的整数部分为n,的小数部分为,的小数部分即为的小数部分加1,为;故答案为【点睛】本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键3、(1),1+;(2);见解析【分析】(1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;(2)先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为【详解】解:(1)正方形ABCD的面积为:,正方形ABCD的边长为:
15、,由题意得:点表示的实数为:,故答案为:,;(2)阴影部分正方形面积为:,求其算术平方根可得:,如图所示:点表示的数即为【点睛】本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键4、(1);(2).【分析】(1)由题意利用算术平方根和立方根的性质进行化简计算即可;(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.【详解】解:(1)(2)【点睛】本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.5、0【分析】互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可【详解】解:根据题意得:ab1,cd0,
16、则(cd)21的值1010【点睛】本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键6、64或64【分析】根据平方根、立方根、有理数的乘方解决此题【详解】解:a216,b327,a4,b3当a4,b3时,ab4364当a4,b3时,ab(4)364综上:ab64或64【点睛】本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键7、(1)x9;(2)x4【分析】(1)方程利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解【详解】解:(1)开方得:x9;(2)开立方得:x13,解得:x4【点睛】本题考查了利用平方根,立方根定
17、义解方程,掌握平方根和立方根的定义是解题的关键平方根:如果x2=a,则x叫做a的平方根,记作“”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数)8、2【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算【详解】解:3()+(1)3+12【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.9、x=5;y=2【分析】根据非负数的性质可得关于x、y的方程组,求解可得其值;【详解】解:由题意可得,联立得 ,解方程组得:,x、y的值分别为5、2【点睛】此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键10、 (1) 0.8; (2) 【分析】根据算术平方根的定义求解即可【详解】解:(1)因为082=0.64,所以0.64的算术平方根是0.8,即=0.8(2)因为,所以的算术平方根是,即【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根