2021-2022学年度强化训练沪科版八年级下册数学期末测评-A卷(含答案及解析).docx

上传人:知****量 文档编号:28150259 上传时间:2022-07-26 格式:DOCX 页数:23 大小:608.26KB
返回 下载 相关 举报
2021-2022学年度强化训练沪科版八年级下册数学期末测评-A卷(含答案及解析).docx_第1页
第1页 / 共23页
2021-2022学年度强化训练沪科版八年级下册数学期末测评-A卷(含答案及解析).docx_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《2021-2022学年度强化训练沪科版八年级下册数学期末测评-A卷(含答案及解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练沪科版八年级下册数学期末测评-A卷(含答案及解析).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版八年级下册数学期末测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、估算的值应在( )A7和8之间B8和9之间C9和10之间D10和11之间2

2、、下列方程中,是一元二次方程的是()Ax2xx2+3BCx21D3、若菱形的两条对角线长分别为10和24,则菱形的面积为()A13B26C120D2404、估计的值应在( )A5和6之间B6和7之间C7和8之间D8和9之间5、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A1,B,C6,7,8D2,3,46、甲、乙、丙、丁四人将进行射击测试,已知每人平时10次射击成绩的平均数都是8.8环,方差分别是,则射击成绩最稳定的是( )A甲B乙C丙D丁7、2021年5月11日,国新办发布我国第七次人口普查结果,全国总人口约14.11亿,与第五次、第六次人口普查数据相比较,我国人口

3、总量持续增长据查,2000年第五次人口普查全国总人口约12.95亿若设从第五次到第七次人口普查总人口的平均增长率为x,则可列方程为( )ABCD8、满足下列条件的三角形中,不是直角三角形的是( )A三内角之比为3:4:5B三边长的平方之比为1:2:3C三边长之比为7:24:25D三内角之比为1:2:39、把方程化成一元二次方程的一般形式,则二次项系数、一次项系数、常数项分别是( )A2,5,0B2,5,1C2,5,0D2,1,010、点P(3,4)到坐标原点的距离是( )A3B4C4D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙、丙三个芭蕾舞团各有10名女演

4、员,她们的平均身高都是165cm,其方差分别为,则_团女演员身高更整齐(填甲、乙、丙中一个)2、如图,在等腰ABC中,BAC30,ABAC,BC4,点P、Q、R分别为边BC、AB、AC上(均不与端点重合)的动点,PQR周长的最小值是_ 线 封 密 内 号学级年名姓 线 封 密 外 3、已知,为实数,且,则_4、已知一个n边形的每个外角都是45,那么这个n边形的内角和是 _5、设a,b,c,d是四个不同的实数,如果a,b是方程的两根,c,d是方程的两根,那么的值为_三、解答题(5小题,每小题10分,共计50分)1、已知:在ABC中,BAC90,ABAC,点D为BC边上一动点(与点B不重合),连接

5、AD,以AD始边作DAE(0180)(1)如图1,当90,且AEAD时,试说明CE和BD的位置关系和数量关系;(2)如图2,当45,且点E在边BC上时,求证:BD2+CE2DE22、计算:3、在中,点D为AC上一点,且,过C作,交AB于点E,垂足为点F(1)若,求CD的长;(2)若,求证:4、数学兴趣小组的同学发现:一些复杂的图形运动是由若干个图形基本运动组合形成的,如一个图形沿一条直线翻折后再沿这条直线的方向平移,这样的一种图形运动,大家讨论后把它称为图形的“翻移运动”,这条直线则称为(这次运动的)“翻移线”如图1,就是由沿直线1翻移后得到的(先翻折,然后再平移)(1)在学习中,兴趣小组的同

6、学就“翻移运动”对应点(指图1中的与,与)连线是否被翻移线平分发生了争议对此你认为如何?(直接写出你的判断)(2)如图2,在长方形中,点分别是边中点,点在边延长线上,联结,如果是经过“翻移运动”得到的三角形请在图中画出上述“翻移运动”的 线 封 密 内 号学级年名姓 线 封 密 外 “翻移线”直线;联结,线段和直线交于点,若的面积为3,求此长方形的边长的长(3)如图3,是(2)中的长方形边上一点,如果,先按(2)的“翻移线”直线翻折,然后再平移2个单位,得到,联结线段,分别和“翻移线”交于点和点,求四边形的面积5、化简或运算:(1);(2)-参考答案-一、单选题1、B【分析】被开方数越大,二次

7、根式的值越大,由即可选出答案【详解】解:,在8和9之间,故选:B【点睛】本题主要考查二次根式的估值,解题的关键是要找到离最近的两个能开方的整数,就可以选出答案2、C【详解】解:A、方程整理为,是一元一次方程,此项不符题意;B、方程中的是分式,不是一元二次方程,此项不符题意;C、方程是一元二次方程,此项符合题意;D、方程中的不是整式,不是一元二次方程,此项不符题意;故选:C【点睛】本题考查了一元二次方程,熟练掌握一元二次方程的定义(只含有一个未知数,并且未知数的最高次数2的整式方程,叫做一元二次方程)是解题关键3、C【分析】根据菱形的面积公式即可得到结论【详解】解:菱形的两条对角线长分别为10和

8、24,菱形的面积为,故选:C【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的面积公式4、B 线 封 密 内 号学级年名姓 线 封 密 外 【分析】化简原式等于,因为,所以,即可求解.【详解】解:=,67,故选:B【点睛】本题考查二次根式的除法和无理数的估算;能够将给定的无理数锁定在相邻的两个整数之间是解题的关键5、A【分析】根据勾股定理的逆定理逐项判断即可得【详解】解:A、,此项能构成直角三角形;B、,此项不能构成直角三角形;C、,此项不能构成直角三角形;D、,此项不能构成直角三角形;故选:A【点睛】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题关键6、A【分析】由平均数和

9、方差对成绩结果的影响比较即可【详解】甲乙丙丁四人平均数相等,甲射击成绩最稳定故选:A【点睛】本题考查了方差的作用方差能够反映所有数据的信息,因而在刻画数据波动情况时比极差更准确方差越大,数据波动越大;方差越小,数据波动越小,越稳定只有当两组数据的平均数相等或接近时,才能用方差比较它们波动的大小7、D【分析】根据等量关系第五次总人口(1+x)2=第七次总人口列方程即可【详解】解:根据题意,得:12.95(1+x)2=14.11,故选:D【点睛】本题考查一元二次方程的应用,理解题意,找准等量关系列出方程是解答的关键8、A【分析】根据勾股定理逆定理及三角形内角和可直接进行排除选项 线 封 密 内 号

10、学级年名姓 线 封 密 外 【详解】解:A、由三内角之比为3:4:5可设这个三角形的三个内角分别为,根据三角形内角和可得,所以,所以这个三角形的最大角为515=75,故不是直角三角形,符合题意;B、由三边长的平方之比为1:2:3可知该三角形满足勾股定理逆定理,即1+2=3,所以是直角三角形,故不符合题意;C、由三边长之比为7:24:25可设这个三角形的三边长分别为,则有,所以是直角三角形,故不符合题意;D、由三内角之比为1:2:3可设这个三角形的三个内角分别为,根据三角形内角和可得,所以,所以这个三角形的最大角为330=90,是直角三角形,故不符合题意;故选A【点睛】本题主要考查勾股定理逆定理

11、及三角形内角和,熟练掌握勾股定理逆定理及三角形内角和是解题的关键9、C【分析】先把方程化为一般形式,再判断三项系数即可.【详解】解: , 所以二次项系数、一次项系数、常数项分别是.故选C【点睛】本题考查的是一元二次方程的一般形式,二次项系数、一次项系数、常数项,掌握“一元二次方程的三项系数的判断”是解本题的关键.10、D【分析】利用两点之间的距离公式即可得【详解】解:点到坐标原点的距离是,故选:D【点睛】本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键二、填空题1、丙【分析】根据方差越小数据越稳定解答即可【详解】解:,丙团女演员身高更整齐,故答案为:丙 线 封 密 内 号学级

12、年名姓 线 封 密 外 【点睛】本题考查方差,熟知方差越小数据越稳定是解答的关键2、#【分析】过BC的中点P作AB,AC的对称点M,N,连接MN交AB与Q,交AC于R,则此时PQR周长最小,求出MQ,RQ,RN即可解决问题【详解】过点P作,的对称点M,N,连接交于Q,交于R,设交于点,则,周长为,当四点共线时,即当点P是的中点时,的周长最小,如图,同理,中,周长的最小值是故答案为:【点睛】本题是三角形综合题,考查了轴对称的性质,等边三角形的性质,等腰三角形的性质,含30度角的直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键3、【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据

13、二次根式的性质求出m的取值,故可求出m,n的值,即可求解【详解】依题意可得m-20且2-m0m=2n-3=0n=3=故答案为:【点睛】此题主要考查二次根式的性质及求值,解题的关键是熟知二次根式被开方数为非负数4、1080【分析】根据多边形的外角和是360度,每个外角都相等,即可求得外角和中外角的个数,即多边形的边数,根据内角和定理即可求得内角和【详解】解:多边形的边数是:36045=8,则多边形的内角和是:(8-2)180=1080故答案为:1080【点睛】本题主要考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化,因而把求多边形内角的计算转化为外角的计算,

14、可以使计算简便5、【分析】由根与系数的关系得,两式相加得,根据一元二次方程根的定义可得,可得,同理可得,两式相减即可得,根据,求得,进而可得【详解】解:由根与系数的关系得,两式相加得 因为是方程的根,所以,又,所以 同理可得 -得因为,所以,所以【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,根据等式的性质变形是解题的关键三、解答题1、(1)CE与BD位置关系是CEBD,数量关系是CEBD,理由见解析(2)见解析【分析】(1)根据BADCAE,BACA,ADAE,运用“SAS”证明ABDACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;

15、(2)把ACE绕点A顺时针旋转90,得到ABG连接DG,由“SAS”得到ADGADE,可得DE 线 封 密 内 号学级年名姓 线 封 密 外 DG,即可把EF,BE,FC放到一个直角三角形中,从而根据勾股定理即可证明;(1)CE与BD位置关系是CEBD,数量关系是CEBD理由:BACDAE90,BAD90DAC,CAE90DAC,BADCAE,在ABD和ACE中,ABDACE (SAS),ACEB45且 CEBDACBB45,ECB45+4590,即CEBD;(2)如图2,把ACE绕点A顺时针旋转90,得到ABG连接DG,则ACEABG,AGAE,BGCE,ABGACE45,GBD90BAC9

16、0,GAE90GADDAE45,在ADG和ADE中,ADGADE(SAS)EDGD,又GBD90,BD2+BG2DG2,即BD2+EC2DE2;【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,旋转的性质,勾股定理的性质,添加恰当辅助线构造全等三角形是本题的关键2、【分析】先计算二次根式的乘法与除法,再去括号,合并同类二次根式即可.【详解】解: 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查的是二次根式的混合运算,掌握“二次根式的加减乘除运算的运算法则与混合运算的运算顺序”是解本题的关键.3、(1)(2)见解析【分析】(1)先求解 利用勾股定理再求解 再利用勾股定理可

17、得的长;(2)过点D、C作DHAB于H,CGAB于G,交BD于P,先证明CGECGB,可得BG=BE,再证明BHDCGB,可得DH=BG=BE,最后结合等腰直角三角形的性质可得结论.(1)解:CEBDDFC=BFC=90BF=3,DF=2,BC=BD=5在RtBFC中, 在RtDFC中,CD=(2)证明:过点D、C作DHAB于H,CGAB于G,交BD于PDHB=CGB=90BFC=90, 1=3BC=BD4=BCD即A+3=ACG+2 A=ACG=453=2=1又CG=CG,CGE=CGB =90CGECGBBG=BE又3=2,BD=BC,BHD=CGB =90BHDCGBDH=BG=BE 线

18、 封 密 内 号学级年名姓 线 封 密 外 在等腰直角AHD中,AD=DH=BE即BE=AD【点睛】本题考查的是全等三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,作出适当的辅助线关键全等三角形是解本题的关键.4、(1)“翻移运动”对应点(指图1中的与,与连线被翻移线平分(2)3(3)11或10【分析】(1)画出图形,即可得出结论;(2)作直线,即为“翻移线”直线,再由“翻移运动”的性质和三角形面积关系求解即可;(3)分两种情况:先按(2)的“翻移线”直线翻折,然后再向上平移2个单位,先按(2)的“翻移线”直线翻折,然后再向下平移2个单位,由“翻移运动”的性质、梯形面积公式和三角形面

19、积公式分别求解即可(1)解:如图1,连接,则“翻移运动”对应点(指图1中的与,与连线被翻移线平分;(2)解:作直线,即为“翻移线”直线,如图2所示:四边形是长方形,由“翻移运动”的性质得:,是的中点,;(3)解:分两种情况:先按(2)的“翻移线”直线翻折,然后再向上平移2个单位,如图3所示: 线 封 密 内 号学级年名姓 线 封 密 外 设翻折后的三角形为,连接,则,同(2)得:,四边形的面积梯形的面积的面积的面积;先按(2)的“翻移线”直线翻折,然后再向下平移2个单位,如图4所示:设翻折后的三角形为,连接,则,同(2)得:,四边形的面积梯形的面积的面积的面积;综上所述,四边形的面积为11或10【点睛】本题是四边形综合题目,考查了长方形的性质、“翻移运动”的性质、梯形面积公式、三角形面积公式等知识,本题综合性强,解题的关键是熟练掌握“翻移运动”的性质和长方形的性质5、(1)(2)3【分析】(1)先通分变成同分母的分式相减,再根据同分母的分式相减法则求出答案即可;(2)先算乘方,再算开方,最后算加减即可(1)解:原式 线 封 密 内 号学级年名姓 线 封 密 外 ;(2)解:原式4()333【点睛】本题考查了分式的加减,分数指数幂,实数的运算等知识点,能灵活运用知识点进行计算是解此题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁