2021-2022学年京改版八年级数学下册第十五章四边形专项测评练习题(含详解).docx

上传人:知****量 文档编号:28149736 上传时间:2022-07-26 格式:DOCX 页数:27 大小:929.31KB
返回 下载 相关 举报
2021-2022学年京改版八年级数学下册第十五章四边形专项测评练习题(含详解).docx_第1页
第1页 / 共27页
2021-2022学年京改版八年级数学下册第十五章四边形专项测评练习题(含详解).docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《2021-2022学年京改版八年级数学下册第十五章四边形专项测评练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版八年级数学下册第十五章四边形专项测评练习题(含详解).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十五章四边形专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,可以看作是中心对称图形的是( )ABCD2、如图,点E是ABC内一点,AEB90,D是边AB的中点,延

2、长线段DE交边BC于点F,点F是边BC的中点若AB6,EF1,则线段AC的长为()A7BC8D93、在方格纸中,选择标有序号中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形该小正方形的序号是()ABCD4、在RtABC中,C90,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D25、下列图案中,是中心对称图形,但不是轴对称图形的是( )ABCD6、一个多边形每个外角都等于36,则这个多边形是几边形( )A7B8C9D107、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向

3、外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJDE于点J,交AB于点K设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:BICD;2SACDS1;S1S4S2S3;其中正确的结论有( )A1个B2个C3个D4个8、平行四边形中,则的度数是( )ABCD9、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且DAE=B=80,那么CDE的度数为( )A20B25C30D3510、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别

4、连接、,则四边形一定是( )A梯形B菱形C矩形D正方形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为_2、如图,在一张矩形纸片ABCD中,AB30cm,将纸片对折后展开得到折痕EF点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_cm3、如图,以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB长度的最小值为_4、坐标平面内的点P(m,2020)与点Q(2021,n)关于原点对称,则mn_5、若

5、一个n边形的每个内角都等于135,则该n边形的边数是_三、解答题(5小题,每小题10分,共计50分)1、如图,已知ABC中,D是AB上一点,ADAC,AECD,垂足是E,F是BC的中点,求证:BD2EF2、如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE绕点A逆时针旋转45得到线段AF,点E的对应点F恰好落在边CD上,过F作FMAC于点M(1)求证:BEFM;(2)求BE的长度3、在中,斜边,过点作,以AB为边作菱形ABEF,若,求的面积4、如图,ABCD中,点E、F分别在AB、CD上,且BEDF求证:AFEC5、问题背景:课外学习小组在一次学习研讨中,得到了如下

6、两个命题:如图(1),在正ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若BON60,则BMCN;如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若BON90,则BMCN然后运用类似的思想提出了如下命题:如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若BON108,则BMCN任务要求:(1)请你从三个命题中选择一个进行证明;(2)请你继续完成下面的探索;在正n(n3)边形ABCDEF中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当BON等于多少度时,结论BMCN成立(不要求证明);如图(

7、4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,BON108时,试问结论BMCN是否成立若成立,请给予证明;若不成立,请说明理由-参考答案-一、单选题1、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对

8、称图形,这个点就是它的对称中心2、C【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长【详解】解:AEB90,D是边AB的中点,AB6,DEAB3,EF1,DFDE+EF3+14D是边AB的中点,点F是边BC的中点,DF是ABC的中位线,AC2DF8故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键3、B【分析】利用中心对称图形的定义判断即可【详解】解:根据中心对称图形的定义可知,满足条件故选:【点睛】本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转18

9、0后与本身重合的图形叫做中心对称图形是解题的关键4、A【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半5、C【分析】根据轴对称图形和中心对称图形的定义求解即可【详解】解:A既是轴对称图形,又是中心对称图形,本选项不符合题意;B既是轴对称图形,又是中心对称图形,本选项不符合题意;C是中心对称图形,但不是轴对称图形,本选项符合题意;D既是轴对称图形,又是中心对称图形,本选项不符合题意;故选:C【点睛】此题考查了轴对

10、称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形6、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数【详解】解:36036=10,这个多边形的边数是10故选D【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键7、C【分析】根据SAS证ABIADC即可得证正

11、确,过点B作BMIA,交IA的延长线于点M,根据边的关系得出SABIS1,即可得出正确,过点C作CNDA交DA的延长线于点N,证S1S3即可得证正确,利用勾股定理可得出S1+S2S3+S4,即能判断不正确【详解】解:四边形ACHI和四边形ABED都是正方形,AIAC,ABAD,IACBAD90,IAC+CABBAD+CAB,即IABCAD,在ABI和ADC中,ABIADC(SAS),BICD,故正确;过点B作BMIA,交IA的延长线于点M,BMA90,四边形ACHI是正方形,AIAC,IAC90,S1AC2,CAM90,又ACB90,ACBCAMBMA90,四边形AMBC是矩形,BMAC,SA

12、BIAIBMAIACAC2S1,由知ABIADC,SACDSABIS1,即2SACDS1,故正确;过点C作CNDA交DA的延长线于点N,CNA90,四边形AKJD是矩形,KADAKJ90,S3ADAK,NAKAKC90,CNANAKAKC90,四边形AKCN是矩形,CNAK,SACDADCNADAKS3,即2SACDS3,由知2SACDS1,S1S3,在RtACB中,AB2BC2+AC2,S3+S4S1+S2,又S1S3,S1+S4S2+S3, 即正确;在RtACB中,BC2+AC2AB2,S3+S4S1+S2,故错误;综上,共有3个正确的结论,故选:C【点睛】本题主要考查勾股定理,正方形的性

13、质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键8、B【分析】根据平行四边形对角相等,即可求出的度数【详解】解:如图所示,四边形是平行四边形,故:B【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质9、C【分析】依题意得出AE=AB=AD,ADE=50,又因为B=80故可推出ADC=80,CDE=ADC-ADE,从而求解【详解】ADBC,AEB=DAE=B=80,AE=AB=AD,在三角形AED中,AE=AD,DAE=80,ADE=50,又B=80,ADC=80,CDE=ADC-ADE=30故选:C【点睛】考查菱形的边的性质,同

14、时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得ADE的度数10、B【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形二、填空题1、16【分析】由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长【详解】四边形ABCD是菱形,且对角线相交于点O点O是AC的中点E为DC的中点OE为CAD的中位线AD=2OE=22=4菱形的周长为:44=16

15、故答案为:16【点睛】本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键2、或【分析】分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可【详解】如图:当将纸片沿纵向对折根据题意可得:为的三等分点在中有如图:当将纸片沿横向对折根据题意得:,在中有为的三等分点故答案为:或【点睛】本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解3、【分析】根据正方形的对角线平分一组对角线可得OCD=ODB=45,正方形的对角线互相垂直平分且相等可得COD=90,OC=OD,然后根据同角的

16、余角相等求出COA=DOB,再利用“ASA”证明COA和DOB全等,根据全等三角形对应边相等可得OA=OB,从而得到AOB是等腰直角三角形,再根据垂线段最短可得OACD时,OA最小,然后求出OA,再根据等腰直角三角形的斜边等于直角边的倍解答【详解】解:如图,四边形CDEF是正方形,在与中,OA=OB,AOB=90,AOB是等腰直角三角形,由勾股定理得: ,要使AB最小,只要OA取最小值即可,根据垂线段最短,OACD时,OA最小,正方形CDEF,FCCD,OD=OF,CA=DA,OA=,AB=【点睛】本题考查了正方形的性质,全等三角形的判定与性质,垂线段最短,勾股定理,熟记各性质并求出三角形全等

17、,然后求出AOB是等腰直角三角形是解题的关键4、-1【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解【详解】解:点P(m,-2020)与点Q(2021,n)关于原点对称,m=2021,n=2020,mn=1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数5、8【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n边形的边数【详解】解:一个n边形的每个内角都等于135,则这个n边形的每个外角等于该n边形的边数是故答案为:【点睛】本题考查了多边形的内角与外角的关系,求得

18、多边形的外角是解题的关键三、解答题1、见解析【分析】先证明 再证明EF是CDB的中位线,从而可得结论.【详解】证明:ADAC,AECDCEEDF是BC的中点EF是CDB的中位线BD2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.2、(1)见解析;(2)4【分析】(1)由旋转和正方形的性质得出FAMEAB,再证即可;(2)求出正方形对角线长,再求出MC=4即可【详解】(1)证明:在正方形ABCD中,线段AE绕点A逆时针旋转45得到线段AFCAB45,EAF45,AEAF FAMEAB FMACFMAB90(AAS

19、) BEFM (2)在正方形ABCD中,边长为4AC,DCA45 AMAB4 MCACAM4 是等腰直角三角形BEMFMC4【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,解题关键是熟练运用正方形的性质和全等三角形的判定进行证明推理3、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点 四边形ABEF为菱形,在中, ,根据题意,根据平行线间的距离处处相等, .答:的面积为

20、.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键4、证明见解析【分析】先证明再证明可得四边形是平行四边形,于是可得结论.【详解】解: ABCD, BEDF,AE=CF,AE/CF 四边形是平行四边形,【点睛】本题考查的是平行四边形的判定与性质,掌握“一组对边平行且相等的四边形是平行四边形”是解本题的关键.5、(1)选或或,证明见详解;(2)当时,结论成立;当时,还成立,证明见详解【分析】(1)命题,根据等边三角形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,

21、再由全等三角形的性质即可证明;命题,根据正方形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题,根据正五边形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;(2)根据(1)中三个命题的结果,得出相应规律,即可得解;连接BD、CE,根据全等三角形的判定定理和性质可得:, ,利用各角之间的关系及等量代换可得:, ,继续利用全等三角形的判定定理和性质即可得出证明【详解】解:(1)如选命题,证明:如图所示: , , , ,在 与CAN中, , ; 如选命题,证明:如图所示: , , , ,在 与CDN中, , ;如选命题,证明:如图所示: , , , ,在 与CDN中, , ;(2)根据(1)中规律可得:当时,结论成立;答:当时,成立证明:如图所示,连接BD、CE,在和中, , , , , , ,又 , ,在和中, , 【点睛】题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁