《2021-2022学年沪教版七年级数学第二学期第十四章三角形达标测试练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年沪教版七年级数学第二学期第十四章三角形达标测试练习题(含详解).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版七年级数学第二学期第十四章三角形达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A10B15C17D192、如图,E为线段BC
2、上一点,ABE=AED=ECD=90,AE=ED,BC=20,AB=8,则BE的长度为( )A12B10C8D63、已知等腰三角形有一个角为50,则这个等腰三角形的底角度数是( )A65B65或80C50或80D50或654、三角形的外角和是()A60B90C180D3605、如图,点F,C在BE上,ACDF,BFEC,ABDE,AC与DF相交于点G,则与2DFE相等的是()AA+DB3BC180FGCDACE+B6、如图,在中,AD、AE分别是边BC上的中线与高,CD的长为5,则的面积为( )A8B10C20D407、等腰三角形的一个顶角是80,则它的底角是( )A40B50C60D708、
3、如图,直线l1l2,被直线l3、l4所截,并且l3l4,146,则2等于()A56B34C44D469、已知,的相关数据如图所示,则下列选项正确的是( )ABCD10、有两边相等的三角形的两边长为,则它的周长为( )ABCD或第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知ABC的面积是12,AB=AC=5,AD是BC边上的中线,E,P分别是AC,AD上的动点,则CP+EP的最小值为_2、如图,在中,点D,E在边BC上,若,则CE的长为_3、边长为1的小正方形组成如图所示的66网格,点A,B,C,D,E,F,G,H都在格点上其中到四边形ABCD四个顶点距离之和最小的
4、点是_4、等腰三角形的两边长分别是和,则它的周长为_5、如图,点C是线段AB的中点,请你只添加一个条件,使得(1)你添加的条件是_;(要求:不再添加辅助线,只需填一个答案即可)(2)依据所添条件,判定与全等的理由是_三、解答题(10小题,每小题5分,共计50分)1、如图,在中,BD是的角平分线,点E在AB边上,求的周长2、已知AMCN,点B在直线AM、CN之间,ABBC于点B(1)如图1,请直接写出A和C之间的数量关系: (2)如图2,A和C满足怎样的数量关系?请说明理由(3)如图3,AE平分MAB,CH平分NCB,AE与CH交于点G,则AGH的度数为 3、如图,在中,点D、E分别在边AB、A
5、C上,BE与CD交于点F,求和的度数4、如图,将ABC绕点A逆时针旋转得到ADE,点D在BC上,已知B70,求CDE的大小5、中,以点为中心,分别将线段,逆时针旋转得到线段,连接,延长交于点(1)如图1,若,的度数为_;(2)如图2,当吋,依题意补全图2;猜想与的数量关系,并加以证明6、如图,已知点B,F,C,E在同一直线上,ABDE,BFCE,ABED,求证:AD7、如图,求证:8、如图,在中,是角平分线,(1)求的度数;(2)若,求的度数9、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,AEGAGE,CDGC(1)求证:AB/CD;(2)若AGE+AHF=180
6、,求证:B=C;(3)在(2)的条件下,若BFC=4C,求D的度数10、已知:如图,在ABC中,AB3,AC5(1)直接写出BC的取值范围是 (2)若点D是BC边上的一点,BAC85,ADC140,BADB,求C-参考答案-一、单选题1、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论【详解】解:当腰是3,底边是7时,3+37,不满足三角形的三边关系,因此舍去当底边是3,腰长是7时,3+77,能构成三角形,则其周长3+7+717故选:C【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应
7、验证各种情况是否能构成三角形,这是解题的关键2、A【分析】利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度【详解】解:由题意可知:ABE=AED=ECD=90,在和中, ,故选:A【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路3、D【分析】可以是底角,也可以是顶角,分情况讨论即可【详解】当角为底角时,底角就是,当角为等腰三角形的顶角时,底角为,因此这个等腰三角形的底角为或故选:D【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进
8、行讨论,这是十分重要的,也是解答问题的关键4、D【分析】根据三角形的内角和定理、邻补角的性质即可得【详解】解:如图,又,即三角形的外角和是,故选:D【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键5、C【详解】由题意根据等式的性质得出BCEF,进而利用SSS证明ABC与DEF全等,利用全等三角形的性质得出ACBDFE,最后利用三角形内角和进行分析解答【分析】解:BFEC,BF+FCEC+FC,BCEF,在ABC与DEF中,ABCDEF(SSS),ACBDFE,2DFE180FGC,故选:C【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有
9、:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法)6、C【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可【详解】解:AD是边BC上的中线,CD的长为5,CB=2CD=10,的面积为,故选:C【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长7、B【分析】依据三角形的内角和是180以及等腰三角形的性质即可解答【详解】解:(180-80)2=1002=50;答:底角为50故选:B【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点8、C【分析】依据l1l2,即可得到3146,再根据l3l4,可得2904644
10、【详解】解:如图:l1l2,146,3146,又l3l4,2904644,故选:C【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是1809、D【分析】根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项【详解】解:,在与FED中,FED,A、B、C三个选项均不能证明,故选:D【点睛】题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键10、D【分析】有两边相等的三角形,是等腰三角形,两边分别为和,但没有明确哪是底边,哪
11、是腰,所以有两种情况,需要分类讨论【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为综上所述,该等腰三角形的周长是或故选:D【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论二、填空题1、【分析】作BMAC于M,交AD于P,根据等腰三角形的性质得到ADBC,求得点B,C关于AD为对称,得到BP=CP,根据垂线段最短得出CP+EE=BP+EP=BEBM,根据数据线的面积公式即可得到结论【详解】解
12、:作BMAC于M,交AD于P,ABC是等腰三角形,AD是BC边上的中线,ADBC,AD是BC的垂直平分线,点B,C关于AD为对称,BP=CP,根据垂线段最短得出:CP+EP=BP+EP=BEBM,AC=BC=5,SABC=BCAD=ACBM=12,BM=AD=,即EP+CP的最小值为,故答案为:【点睛】本题考查了等腰三角形的性质和轴对称等知识,熟练掌握等腰三角形和轴对称的性质是本题的关键2、5【分析】由题意易得,然后可证,则有,进而问题可求解【详解】解:,(ASA),;故答案为5【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键3、E【分析】到四边形ABCD
13、四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可【详解】如图所示,连接BD、AC、GA、GB、GC、GD,到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,根据图形可知,对角线交点为E,故答案为:E【点睛】本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置4、22【分析】分两种情况讨论:当腰长为时, 当腰长为时,再结合三角形的三边关系,从而可得答案.【详解】解: 等腰三角形的两边长分别是和, 当腰长为时,此时 不符合题意,舍去,当腰长为时,此时 符合题意,所以三角形的周长为: 故答案为:【点睛】本题考查的是等腰三角形的定义,三角形的三边
14、关系,掌握“等腰三角形的两腰相等,再分情况讨论”是解本题的关键.5、AD=CE(或D=E或ACD=B)(答案不唯一) SAS 【分析】(1)由已知条件可得两个三角形有一组对应边相等,一组对应角相等,根据三角形全等的判定方法添加条件即可;(2)根据添加的条件,写出判断的理由即可【详解】解:(1)添加的条件是:AD=CE(或D=E或ACD=B)故答案为:AD=CE(或D=E或ACD=B)(2)若添加:AD=CE点C是线段AB的中点,AC=BC (SAS)故答案为:SAS【点睛】本题主要考查了添加条件判断三角形全等,熟练掌握全等三角形的判断方法是解答本题的关键三、解答题1、【分析】由题意结合角平分线
15、性质和全等三角形判定得出,进而依据的周长进行求解即可.【详解】解:,,BD是的角平分线,,在和中,,,的周长.【点睛】本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.2、(1)A+C90;(2)CA90,见解析;(3)45【分析】(1)过点B作BEAM,利用平行线的性质即可求得结论;(2)过点B作BEAM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论【详解】(1)过点B作BEAM,如图,BEAM,AABE,BEAM,AMCN,BECN,CCBE,ABBC
16、,ABC90,A+CABE+CBEABC90故答案为:A+C90;(2)A和C满足:CA90理由:过点B作BEAM,如图,BEAM,AABE,BEAM,AMCN,BECN,C+CBE180,CBE180C,ABBC,ABC90,ABE+CBE90,A+180C90,CA90;(3)设CH与AB交于点F,如图,AE平分MAB,GAFMAB,CH平分NCB,BCFBCN,B90,BFC90BCF,AFGBFC,AFG90BCFAGHGAF+AFG,AGHMAB+90BCN90(BCNMAB)由(2)知:BCNMAB90,AGH904545故答案为:45【点睛】本题考查平行线的性质以及三角形外角的性
17、质,由题作出辅助线是解题的关键3、87,40【分析】根据三角形外角的性质可得,代入计算即可求出,再根据三角形内角和定理求解即可【详解】解:,【点睛】本题考查了三角形内角和和外角的性质,解题关键是准确识图,理清角之间的关系,准确进行计算4、【分析】先由旋转的性质证明再利用等边对等角证明从而可得答案.【详解】解: 把ABC绕点A逆时针旋转得到ADE,B70, 【点睛】本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.5、(1)120(2)图形见解析;【分析】(1)根据进而判断出点E在边AB上,得出ADEABC(SAS),进而得出AED=ACB=90最
18、后用三角形的外角的性质即可得出结论;(2)依题意补全图形即可;先判断出ADEABC(SAS),进而得出AEF=90,即可判断出RtAEFRtACF,进而求出CAF=CAE=30,即可得出结论(1)(1)如图1,在RtABC中,B=30,BAC=60,由旋转知,CAE=60=CAB,点E在边AB上,AD=AB,AE=AC,ADEABC(SAS),AED=ACB=90,CFE=B+BEF=30+90=120,故答案为120;(2)(2)依题意补全图形如图2所示,如图2,连接AF,BAD=CAE,EAD=CAB,AD=AB,AE=AC,ADEABC(SAS),AED=C=90,AEF=90,RtAE
19、FRtACF(HL),EAF=CAF,CAF=CAE=30,在RtACF中,CF=AF,且AC2+CF2=AF2,【点睛】此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出ADEABC是解本题的关键6、见解析【分析】根据平行线的性质得出BE,进而利用SAS证明,利用全等三角形的性质解答即可【详解】证明:,即,在和中,【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证是解题的关键7、证明过程见解析【分析】先证明,得到,再证明,即可得解;【详解】由题可得,在和中,又,在和中,【点睛】本题
20、主要考查了全等三角形的判定与性质,准确分析证明是解题的关键8、(1);(2)【分析】(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;(2)根据垂直得出,然后根据三角形内角和定理即可得(1)解:,AD是角平分线,;(2),【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键9、(1)见解析;(2)见解析;(3)108【分析】(1)根据对顶角相等结合已知条件得出AEGC,根据内错角相等两直线平行即可证得结论;(2)由AGE+AHF=180等量代换得DGC+AHF=180可判断EC/BF,两直线平行同位角相等得出B=AEG,结合(1)得出结论;
21、(3)由(2)证得EC/BF,得BFC+C=180,求得C的度数,由三角形内角和定理求得D的度数【详解】证明:(1)AEG=AGE,C=DGC,AGE=DGCAEG=C AB/CD(2)AGE=DGC,AGE+AHF=180DGC+AHF=180EC/BF B=AEG由(1)得AEG=C B=C(3)由(2)得EC/BFBFC+C=180BFC=4C C=36 DGC=36C+DGC+D=180 D=108【点睛】此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键10、(1)2BC8;(2)25【分析】(1)根据三角形三边关系解答即可;(2)根据三角形外角性质和三角形内角和解答即可【详解】解:(1)AC-ABBCAC+AB,AB3,AC52BC8,故答案为:2BC8(2)ADC是ABD的外角ADCB+BAD140BBADBB+BAC+C180C180BBAC即C180708525【点睛】本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出B的度数是解此题的关键