《2021-2022学年基础强化北师大版七年级数学下册第五章生活中的轴对称难点解析试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版七年级数学下册第五章生活中的轴对称难点解析试题(含详细解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章生活中的轴对称难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下是四个我国杰出企业代表的标志,其中是轴对称图形的是( )ABCD2、下列图案,是轴对称图形的为()ABCD3、
2、下列交通标志中,是轴对称图形的是( )ABCD4、下列四个图案中,不是轴对称图形的是( )ABCD5、下列图案是轴对称图形的是()ABCD6、如图,正方形网格中, A,B两点均在直线a上方,要在直线a上求一点P,使PAPB的值最小,则点P应选在( )AC点BD点CE点DF点7、现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性下列汉字是轴对称图形的是( )A喜B欢C数D学8、如图,ABC与ABC关于直线MN对称,BB交MN于点O,则下列结论不一定正确的是()AACACBBOBOCAAMNDABBC9、下列图形不是轴对称图形的是( )ABCD10、下列垃圾分类的标识中,是轴对称图形的是
3、( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在点D、C的位置处,若158,则EFB的度数是_2、如图,在ABC中,BAC80,C45,AD是ABC的角平分线,那么ADB_度3、如图,点关于、的对称点分别是,线段分别交、于、,cm,则的周长为_ cm4、如图,直角三角形纸片的两直角边分别为6和8,现将ABC折叠,使点A与点B重合,折痕为DE,则CBE的周长是_5、如图,是轴对称图形且只有两条对称轴的是_(填序号)三、解答题(5小题,每小题10分,共计50分)1、在边长为1个单位长度的小正方形网格中,
4、建立平面直角坐标系,已知点O为坐标原点,点C的坐标为(3,1)(1)写出点A和点B的坐标,并在图中画出与ABC关于x轴对称的图形;(2)写出点B1的坐标,连接CB1,则线段CB1的长为 (直接写出得数)2、如图,将ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处求1+2的度数3、综合与应用:根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数:点A表示_,点B表示_(2)观察数轴,与点A的距离为4的点表示的数是_和_(3)若将数轴折叠,使得点A与表示的点重合,则点B与数_表示的点重合(4)若数轴上M,N两点之间的距离为2020(点M在点
5、N的左侧),且M,N两点经过(3)中的折叠后互相重合,则M、N两点表示的数分别是什么?4、如图在77的正方形网格中,点A、B、C都在格点上,点D是AB与网格线的交点且AB5,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示(1)作AB边上高CE(2)画出点D关于AC的对称点F;(3)在AB上画点M,使BMBC;(4)在ABC内画点P,使SABPSACPSBCP5、如图,P为ABC的外角平分线上任一点求证:PBPCABAC-参考答案-一、单选题1、B【详解】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对
6、称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键2、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】解:A不是轴对称图形,故本选项不符合题意;B不是轴对称图形,故本选项不符合题意;C不是轴对称图形,故本选项不符合题意D是轴对称图形,故本选项符合题意;故选:D【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合3、C【分析】根据轴对称图形的
7、概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判断即可【详解】解:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误;故选C【点睛】本题考查了轴对称图形的知识,属于基础题,掌握轴对称的定义是关键4、B【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可【详解】解:A、是轴对称图形,不合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意故选:B【点睛】此题主要考
8、查了轴对称图形,正确掌握轴对称图形的性质是解题关键5、D【分析】根据轴对称图形的定义,即是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形叫轴对称图形判断即可;【详解】由已知图形可知, 是轴对称图形;故选D【点睛】本题主要考查了轴对称图形的识别,准确分析判断是解题的关键6、C【分析】取A点关于直线a的对称点G,连接BG与直线a交于点E,点E即为所求【详解】解:如图所示,取A点关于直线a的对称点G,连接BG与直线a交于点E,点E即为所求,故选C【点睛】本题主要考查了轴对称最短路径问题,解题的关键在于能够熟练掌握轴对称最短路径的相关知识7、A【分析】利用轴对称图形的概念可得答案【详解】解
9、:A、是轴对称图形,故此选项合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形8、D【分析】根据轴对称的性质解答【详解】解:ABC与ABC关于直线MN对称,BB交MN于点O,ACAC,BOBO,AAMN,但ABBC不正确,故选:D【点睛】此题考查了轴对称的性质:轴对称两个图形的对应边相等,对应角相等,熟记性质是解题的关键9、B【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,
10、这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】选项A、C、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,选项B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:B【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置10、B【详解】解:图和是轴对称图形,故选:B【点睛】本题考查了轴对称图形,熟记轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键二、填空题1、61【分析】根据折叠性质得出DED=2DEF,根据1的度数求出
11、DED,即可求出DEF的度数,进而得到答案【详解】解:由翻折的性质得:DED=2DEF,1=58,DED=180-1=122,DEF=61,又ADBC,EFB=DEF=61故答案为:61【点睛】本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键2、【分析】根据角平分线的定义求得,进而根据三角形的外角性质即可求得的度数【详解】BAC80,AD是ABC的角平分线,又C45故答案为:【点睛】本题考查了角平分线的定义,三角形的外角性质,掌握以上知识是解题的关键3、8【分析】首先根据点P关于OA、OB的对称点分别是P1,P2,可得PD=P1D,PC=P2C;然后根据P1
12、P2=8cm,可得P1D+DC+P2C=8cm,所以PD+DC+PC=8cm,即PCD的周长为8cm,据此解答即可【详解】解:点P关于OA、OB的对称点分别是P1,P2,PD=P1D,PC=P2C;P1P2=8(cm),P1D+DC+P2C=8(cm),PD+DC+PC=8(cm),即PCD的周长为8cm故答案为:8【点睛】本题考查了轴对称的性质的应用,要熟练掌握,解题的关键是判断出:PD=P1D,PC=P2C此题还考查了三角形的周长的含义以及求法的应用,要熟练掌握4、14【分析】根据图形翻折变换的性质得出AEBE,进而可得出CBE的周长ACBC【详解】解:BDE是ADE翻折而成,AEBE,C
13、BE的周长BCBECEBCAECEBCAC,角三角形纸片的两直角边长分别为6和8,CBE的周长是14故答案为:14【点睛】本题考查的是图形翻折变换的性质,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键5、【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是它的一条对称轴,由此即可判断图形的对称轴条数及位置【详解】图标中,是轴对称图形的有,其中只有2条对称轴的是,有4条对称轴的是。故答案为:【点睛】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数的灵活应用,这里要求
14、学生熟记已学过的特殊图形的对称轴特点进行解答三、解答题1、(1)A(1,3),B(-3,2),见解析;(2)(-3,-2),【分析】(1)根据平面直角坐标系直接写出点A,点B坐标,利用关于x轴对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到A1B1C1;(2)写出B1的坐标,运用勾股定理可求出CB1的长【详解】解:(1)A(1,3),B(-3,2),如图所示;(2)(-3,-2),的长为故答案为:【点睛】本题主要考查作图轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点2、180【分析】根据翻折变换前后对应角不变,故BHOG,ADOE,CEOF,1+2
15、+HOG+EOF+DOE360,进而求出1+2的度数【详解】解:将ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,BHOG,ADOE,CEOF,1+2+HOG+EOF+DOE360,HOG+EOF+DOEA+B+C180,1+2360180180【点睛】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出HOG+EOF+DOEA+B+C180是解题关键3、(1)1,-2.5;(2)3,5;(3)0.5;(4)M表示的数为-1011;N表示的数为1009【分析】(1)根据数轴的性质读数,即可得到答案;(2)根据数轴和绝对值的性质计算,即可得到答案;(3)根据数轴的性质计算
16、,即可得到答案;(4)根据数轴和绝对值的性质,结合题意,通过列方程并求解,即可得到答案【详解】解:(1)根据数轴性质,读数得:A:1;B:-2.5,故答案是:1,-2.5;(2)假设与点A的距离为4的数为:x或或即与点A的距离为4的点表示的数是:5或-3,故答案是:5或-3,(3)A点与-3表示的点重合,且A点与-3距离为4A点与-3之间的中心点为:-1数轴以-1为中心折叠折叠后重合的点到点-1的距离相等又B点到-1点的距离为: 设和B点重合的点为:x或(即B点舍去)B点与0.5表示的点重合,故答案是:0.5;(4)假设M点表示的数为:x,N点表示的数为:y数轴上M、N两点之间的距离为2020
17、(M在N的左侧),且M、N两点经过(3)中折叠后互相重合M、N两点到点-1距离为1010假设距离点-1的距离为1010的点为:x 或或M在N的左侧M:-1011;N:1009,故答案是:-1011,1009【点睛】本题考查了绝对值、数轴、一元一次方程的知识;解题的关键是熟练掌握绝对值、数轴、一元一次方程的性质,从而完成求解4、(1)见解析;(2)见解析;(3)见解析;(4)见解析【分析】(1)取格点,连接交于点,线段即为所求;(2)作线段关于直线的对称直线与网格线的交点即为所求;(3)取格点,连接,交于点,点即为所求;(4)的中线的交点,即为所求【详解】解:(1)如图,取格点,连接交于点,由C
18、HTACB及三角形内角和定理,可证,线段即为所求线段;(2)如图,作线段关于直线的对称直线,与网格线的交点即为所求;(3)如图,同(1)一样,先可判断,根据等腰三角形的性质,可得出点即为所求;(4)如图,作三条边的中线,交点于点为重心,根据重心和三角形3个顶点组成的3个三角形面积相等即可确定点即为所求【点睛】本题考查作图轴对称变换,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题,灵活运用所学知识解决问题5、见解析【分析】分两种情况讨论:当点P与点A不重合时,在BA延长线上取一点D,使ADAC,连接PD可证得PADPAC,再利用三角形的三边关系,可得PBPCABAC当点P与点A重合时,可得PBPCABAC,即可求证【详解】证明:如图,当点P与点A不重合时,在BA延长线上取一点D,使ADAC,连接PDP为ABC的外角平分线上一点,12 ,在PAD和PAC中PADPAC(SAS),PDPC,在PBD中,PBPDBD,BDABAD,PBPCABAC当点P与点A重合时,PBPCABAC综上,PBPCABAC【点睛】本题主要考查了全等三角形的判定和性质,三角形的三边关系,能利用分类讨论思想解答是解题的关键