《2021-2022学年最新京改版八年级数学下册第十五章四边形同步训练练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新京改版八年级数学下册第十五章四边形同步训练练习题(无超纲).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十五章四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形既是中心对称图形,又是轴对称图形的是( )ABCD2、一个多边形每个外角都等于36,则这个多边形是几边形(
2、 )A7B8C9D103、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD4、一个多边形纸片剪去一个内角后,得到一个内角和为2340的新多边形,则原多边形的边数为( )A14或15或16B15或16或17C15或16D16或175、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( )ABCD6、如图,在中,AD平分,E是AD中点,若,则CE的长为( )ABCD7、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,
3、CD,过点C作CJDE于点J,交AB于点K设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:BICD;2SACDS1;S1S4S2S3;其中正确的结论有( )A1个B2个C3个D4个8、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致下列窗户图案中,是中心对称图形的是( )ABCD9、如图,在六边形中,若,则( )A180B240C270D36010、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四边形和
4、四边形都是边长为4的正方形,点是正方形对角线的交点,正方形绕点旋转过程中分别交,于点,则四边形的面积为_2、若一个多边形的一条对角线把它分成两个四边形,则这个多边形的内角和是_度3、一个凸边形的边数与对角线条数的和小于20,且能被5整除,则_4、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_5、如图,正方形ABCD的边长为做正方形,使A,B,C,D是正方形各边的中点;做正方形,使是正方形各边的中点以此类推,则正方形的边长为_ 三、解答题(5小题,每小题10分,共计50分)1、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BEBF求证:DEFDFE2、如图,四边形AB
5、CD是一个菱形绿草地,其周长为40m,ABC120,在其内部有一个矩形花坛EFGH,其四个顶点恰好在菱形ABCD各边中点,现准备在花坛中种植茉莉花,其单价为30元/m2,则需投资资金多少元?( 取1.732)3、如图,四边形ABCD是平行四边形,BAC90(1)尺规作图:在BC上截取CE,使CECD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论4、在如图所示的43网格中,每个小正方形的边长均为1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段点A固定在格点上(1)若a是图中能用网格
6、线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a ,b , ;(2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为 , 5、已知长方形ABCO,O为坐标原点,B的坐标为(8,6),点A,C分别在坐标轴上,P是线段BC上的动点,设PCm(1)已知点D在第一象限且是直线y2x6上的一点,设D点横坐标为n,则D点纵坐标可用含n的代数式表示为 ,此时若APD是等腰直角三角形,求点D的坐标;(2)直线y2xb过点(3,0),请问在该直线上,是否存在第一象限的点D使APD是等腰直角三角形?若存在,请直接写出这些点的坐标,若不存在,请说明理由-参考答案-一、单选
7、题1、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是轴对称图形,故符合题意【点睛】本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键2、D【分析】根据任何多边形的外角和都是360度,利用360除
8、以外角的度数就可以求出外角和中外角的个数,即多边形的边数【详解】解:36036=10,这个多边形的边数是10故选D【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键3、D【分析】根据轴对称图形与中心对称图形的概念求解即可【详解】解:A是轴对称图形,不是中心对称图形,故此选项不合题意;B是轴对称图形,不是中心对称图形,故此选项不合题意;C是轴对称图形,不是中心对称图形,故此选项符合题意;D是轴对称图形,也是中心对称图形,故此选项不合题意故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完
9、全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形4、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180=2340,解得:n=15,若截去一个角后边数增加1,则原多边形边数为14,若截去一个角后边数不变,则原多边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故选:A【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)
10、180(n为边数)是解题的关键5、C【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,即可判断出答案【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;B、此图形不是中心对称图形,故此选项不符合题意;C、此图形是中心对称图形,故此选项符合题意;D、此图形不是中心对称图形,故此选项不符合题意故选:C【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心6、B【分析】根据三角形内角和定理求出BAC,根据角平分线的定义DAB=B,求出AD,根据直角三角形的性质解答即可【详解】解:ACB=90,B=30,BAC=90-30=60,AD平分BAC,DAB
11、=BAC=30,DAB=B,AD=BD=a,在RtACB中,E是AD中点,CE=AD=,故选: B【点睛】本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键7、C【分析】根据SAS证ABIADC即可得证正确,过点B作BMIA,交IA的延长线于点M,根据边的关系得出SABIS1,即可得出正确,过点C作CNDA交DA的延长线于点N,证S1S3即可得证正确,利用勾股定理可得出S1+S2S3+S4,即能判断不正确【详解】解:四边形ACHI和四边形ABED都是正方形,AIAC,ABAD,IACBAD90,IAC+CABBAD+CAB,即IABCAD,在ABI
12、和ADC中,ABIADC(SAS),BICD,故正确;过点B作BMIA,交IA的延长线于点M,BMA90,四边形ACHI是正方形,AIAC,IAC90,S1AC2,CAM90,又ACB90,ACBCAMBMA90,四边形AMBC是矩形,BMAC,SABIAIBMAIACAC2S1,由知ABIADC,SACDSABIS1,即2SACDS1,故正确;过点C作CNDA交DA的延长线于点N,CNA90,四边形AKJD是矩形,KADAKJ90,S3ADAK,NAKAKC90,CNANAKAKC90,四边形AKCN是矩形,CNAK,SACDADCNADAKS3,即2SACDS3,由知2SACDS1,S1S
13、3,在RtACB中,AB2BC2+AC2,S3+S4S1+S2,又S1S3,S1+S4S2+S3, 即正确;在RtACB中,BC2+AC2AB2,S3+S4S1+S2,故错误;综上,共有3个正确的结论,故选:C【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键8、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查
14、了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心9、C【分析】根据多边形外角和求解即可【详解】解: , ,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键10、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A、不是轴
15、对称图形,是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、既是轴对称图形,又是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、4【分析】过点O作OGAB,垂足为G,过点O作OHBC,垂足为H,把四边形的面积转化为正方形OGBH的面积,等于正方形ABCD面积的【详解】如图,过点O作OGAB,垂足为G,过点O作OHBC,垂足为H,四边形ABCD的对角线交点为O,OA=
16、OC,ABC=90,AB=BC,OGBC,OHAB,四边形OGBH是矩形,OG=OH=,GOH=90,=4,FOH+FOG=90,EOG+FOG=90,FOH=EOG,OGE=OHF=90,OG=OH,OGEOHF,=4,故答案为:4【点睛】本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键2、720【分析】根据一个多边形被一条对角线分成两个四边形,可得多边形的边数,根据多边形的内角和定理,可得答案【详解】解:由题意,得两个四边形有一条公共边,得多边形是,由多边形内角和定理,得故答案为:720【点睛】本题考查了多边形的对角线,利
17、用了多边形内角和定理,解题的关键是注意对角线是两个四边形的公共边3、5或6【分析】先把多边形的边数与对角线的条数之和因式分解,列不等式得出,两个连续整式的积小于40根据能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除即可 【详解】解:20,能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除,故答案为5或6【点睛】本题考查因式分解,熟记n边形对角线条数的公式,列不等式,根据条件进行讨论是解题关键4、144度【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案【详解】解:四边形的四个外角的度数之比为
18、1:2:3:4,四个外角的度数分别为:360;360;360;360;它最大的内角度数为:故答案为:144【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360,从而进行计算5、【分析】利用正方形ABCD的及勾股定理,求出的长,再根据勾股定理求出和的长,找出规律,即可得出正方形的边长【详解】解:A,B,C,D是正方形各边的中点,正方形ABCD的边长为,即AB=,解得:,=2,同理=2,=4 ,=,的边长为故答案为:【点睛】本题考查了正方形性质、勾股定理的应用,解此题的关键是能根据计算结果得出规律,本题具有一定的代表性,是一道比较好的题目三、解答题1、见解析【
19、分析】根据菱形的性质可得AB=BC=CD=AD,A=C,再由BE=BF,可推出AE=CF,即可利用SAS证明ADECDF得到DE=DF,则DEF=DFE【详解】解:四边形ABCD是菱形,AB=BC=CD=AD,A=C,BE=BF,AB-BE=BC-BF,即AE=CF,ADECDF(SAS),DE=DF,DEF=DFE【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质2、2598元【分析】根据菱形的性质,先求出菱形的一条对角线,由勾股定理求出另一条对角线的长,由三角形的中位线定理,求出矩形的两条边,再求出矩形的面积,最后求得投资
20、资金【详解】连接BD,AD相交于点O,如图:四边形ABCD是一个菱形,ACBD,ABC=120,A=60,ABD为等边三角形,菱形的周长为40m,菱形的边长为10m,BD10m,BO5m,在RtAOB中,m,AC2OAm,E、F、G、H分别是AB、BC、CD、DA的中点,EHBD 5m,EFAC5m,S矩形5550m2,则需投资资金5030=15001.7322598元【点睛】本题考查了二次根式的应用,勾股定理,菱形的性质,等边三角形的判定与性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质与定理是解题的关键3、(1)图形见解析;(2),证明见解析【分析】(1)以C为圆心CD长为
21、半径画弧于BC交点即为E;连DE与AC交点即为F;过F作AD的垂直平分线与AD交点即为M;(2)证明DF平分,再利用角平分线的性质判定即可【详解】(1)图形如下:(2),证明如下:由(1)可得:,CECD四边形ABCD是平行四边形ADBC,ABCD,即DF平分BAC90【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定与性质4、(1),2,;(2)4或5【分析】(1)借助网格得出最大的无理数以及最小的无理数,进而求出即可;(2)根据要求周长边长为的菱形即可【详解】解:(1)由题意得:a=
22、,b=2,;故答案为:,2,;(2)如图1,2中,菱形ABCD即为所求菱形ABCD的面积为=42=4或菱形ABCD的面积=5,故答案为:4或5【点睛】本题考查作图-应用与设计作图,无理数,勾股定理,菱形的性质等知识,解题的关键是理解题意,正确作出图形解决问题5、(1)点D(4,14);(2)存在第一象限的点D使APD是等腰直角三角形,点D的坐标或【分析】(1)过点D作DEy轴于E,PFy轴于F,设D点横坐标为n,点D在第一象限且是直线y2x6上的一点,可得点D(n,2n+6),根据APD是等腰直角三角形,可得EDA=FAP,可证EDAFAP(AAS),可得AE=PF,ED=FA,再证四边形AF
23、PB为矩形,得出点D(n,14),根据点D在直线y2x6上,求出n=4即可;(2)直线y2xb过点(3,0),求出b =-6,设点D(x, 2x-6),分三种情况当ADP=90,AD=DP,ADP为等腰直角三角形,证明EDAFPD(AAS),再证四边形OCFE为矩形,EF=OC=8,得出DE+DF=x+2x-14=8;当APD=90,AP=DP,ADP为等腰直角三角形,先证ABPPFD(AAS),得出CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6;当PAD=90,AP=AD,ADP为等腰直角三角形,先证四边形AFPB为矩形,得出PF=AB=8,再证APFDAE(AAS),得出求
24、解方程即可【详解】解:(1)过点D作DEy轴于E,PFy轴于F,设D点横坐标为n,点D在第一象限且是直线y2x6上的一点,x=n,y2n6,点D(n,2n+6),APD是等腰直角三角形,DA=AP,DAP=90,DAE+FAP=180-DAP=90,DEy轴,PFy轴,DEA=AFP=90,EDA+DAE=90,EDA=FAP,在EDA和FAP中,EDAFAP(AAS),AE=PF,ED=FA,四边形OABC为矩形,B的坐标为(8,6),AB=OC=8,OA=BC=6,FAB=ABP=90,AFP=90,四边形AFPB为矩形,PF=AB=8,EA=FP=8,OE=OA+AE=6+8=14,点D
25、(n,14),点D在直线y2x6上,142n6,,n=4,点D(4,14);(2)直线y2xb过点(3,0),06b,b =-6,直线y2x-6,设点D(x, 2x-6),过点D作EFy轴,交y轴于E,交CB延长线于F,要使ADP为等腰直角三角形,当ADP=90,AD=DP,ADP为等腰直角三角形,ADE+FDP=180-ADP=90,DEy轴,PFy轴,DEA=AFP=90,EDA+DAE=90,EAD=FDP,在EDA和FPD中,EDAFPD(AAS),AE=DF=2x-6-8=2x-14,ED=FP=x,四边形OABC为矩形,AB=OC=8,OA=BC=6,OCF=90,四边形OCFE为
26、矩形,EF=OC=8,DE+DF=x+2x-14=8,解得x=,点D;当APD=90,AP=DP,ADP为等腰直角三角形,APB+DPF=90,过D作DF射线CB于F,DFP=90,四边形OABC为矩形,AB=OC=8,OA=CB=6,ABP=90,BAP+APB=90,BAP=FPD,在ABP和PFD中,ABPPFD(AAS),BP=FD=x-8,AB=PF=8,CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6,解得x=,点D;当PAD=90,AP=AD,ADP为等腰直角三角形,EAD +PAF=90,过D作DEy轴于E,过P作PFy轴于F,DEA=PFA=90,FAP+FPA
27、=90,FPA=EAD,四边形OABC为矩形,AB=OC=8,OA=CB=6,ABP=BAO=90,PFA=90,四边形AFPB为矩形,PF=AB=8,在APF和DAE中,APFDAE(AAS),FP=AE=8,AF=DE=6-m,OE=OA+AE=6+8=14,解得:,PCm0,AF=6-m610,此种情况不成立;综合存在第一象限的点D使APD是等腰直角三角形,点D的坐标或【点睛】本题考查等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质,掌握等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质是解题关键