《2021-2022学年最新北师大版八年级数学下册第四章因式分解专题攻克试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新北师大版八年级数学下册第四章因式分解专题攻克试卷(无超纲).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第四章因式分解专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知abc为ABC的三条边边长,且满足等式a22b2c22ab2bc0,则ABC的形状为( )A等腰三角形B等边
2、三角形C直角三角形D钝角三角形2、已知cab0,若M|a(ac)|,N|b(ac)|,则M与N的大小关系是()AMNBMNCMND不能确定3、已知x2x6(xa)(xb),则( )Aab6Bab6Cab6Dab64、下列等式中,从左到右是因式分解的是( )ABCD5、若一个三角形的三边长为a,b,c,且满足a22abb2acbc 0,则这个三角形是( )A直角三角形B等边三角形C等腰三角形D等腰直角三角形6、下列多项式中能用平方差公式分解因式的是( )ABCD7、下列从左边到右边的变形中,是因式分解的是( )ABCD8、下列因式分解正确的是( )ABCD9、下列多项式能使用平方差公式进行因式分
3、解的是( )ABCD10、下列各式能用公式法因式分解的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个凸边形的边数与对角线条数的和小于20,且能被5整除,则_2、因式分解_3、分解因式:_4、分解因式:_5、若,则_三、解答题(5小题,每小题10分,共计50分)1、观察下列因式分解的过程:根据上述因式分解的方法,尝试将下列各式进行因式分解:(1);(2)2、阅读下列材料材料一:任意一个三位自然数m,若百位数字不大于4,则称m为“潜力数”材料二:在“潜力数”m的左边放一个奇数a,得到一个多位数;在“潜力数”m的右边放一个0,得到一个四位数,规定:例如:
4、,(1)计算:_,_;(2)已知“潜力数”(其中,x、y是整数),若能被26整除,求m的值3、因式分解:(1) (2)4、因式分解(1)n2(m2)n(2m)(2)(a2+4)216a25、(1)计算:(2)因式分解:-参考答案-一、单选题1、B【分析】首先利用分组分解法对已知等式的左边进行因式分解,再根据三角形的三边关系得到,从而得到答案【详解】解:a22b2c22ab2bc0;为等边三角形故选B【点睛】本题考查了因式分解的应用、非负数的性质、等边三角形的判断,以及灵活利用因式分解建立与方程之间的关系来解决问题2、C【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(ac)(ba)0,
5、故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解【详解】方法一:cab0,a-c0,M|a(ac)|=- a(ac)N|b(ac)|=- b(ac)M-N=- a(ac)- b(ac)= - a(ac)+ b(ac)=(ac)(ba)b-a0,(ac)(ba)0MN方法二: cab0,可设c=-3,a=-2,b=-1,M|-2(-2+3)|=2,N|-1(-2+3)|=1MN故选C【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(ac)(ba)0,再进行判断3、B【分析】先利用十字相乘法去掉括号,再根据等式的性质得ab1,ab6
6、【详解】解:x2x6(xa)(xb),x2x6x2(ab)xab,ab1,ab6;故选:B【点睛】本题考查了十字相乘法分解因式,掌握运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,这是解题关键4、B【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键5、
7、C【分析】先用完全平方公式和提取公因式法把等式左边因式分解,得出a,b,c之间的关系判断即可【详解】解:a22abb2acbc 0,即,故选:C【点睛】本题考查了因式分解的应用,解题关键是熟练运用分组分解法把等式左边因式分解,得出三角形边之间的等量关系6、A【分析】利用平方差公式逐项进行判断,即可求解【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式
8、 是解题的关键7、A【分析】根据因式分解的定义逐个判断即可【详解】解:A是因式分解,故本选项符合题意;B等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解8、C【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本
9、选项正确;D、,故本选项错误故选:C【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底9、B【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解【详解】解:A、,不能进行因式分解,不符合题意;B、m2+11m2(1+m)(1m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键平方差公式:a2b2(a+b)(ab)10、A【分析】利用完全平方公式和平方差公式
10、对各个选项进行判断即可【详解】解:A、,故本选项正确;B、x2+2xy-y2 一、三项不符合完全平方公式,不能用公式法进行因式分解,故本选项错误;C、x2+xy-y2中间乘积项不是两底数积的2倍,不能用公式法进行因式分解,故本选项错误;D、-x2-y2不符合平方差公式,不能用公式法进行因式分解,故本选项错误故选:A【点睛】本题考查了公式法分解因式,能用完全平方公式进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍,熟记公式结构是求解的关键二、填空题1、5或6【分析】先把多边形的边数与对角线的条数之和因式分解,列不等式得出,两个连续整式的积小于40根据能被5整除,当n=5,
11、能被5整除,当n-1=5,n=6,能被5整除即可 【详解】解:20,能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除,故答案为5或6【点睛】本题考查因式分解,熟记n边形对角线条数的公式,列不等式,根据条件进行讨论是解题关键2、【分析】先提公因式再根据平方差公式因式分解即可【详解】解:故答案为:【点睛】本题考查了提公因式和公式法因式分解,掌握因式分解的方法是解题的关键3、【分析】用提公因式法即可分解因式【详解】故答案为:【点睛】本题考查了提公因式法分解因式,因式分解的步骤一般是先考虑提公因式,其次考虑公式法另外因式分解要进行到再也不能分解为止4、【分析】会利用公式进行因式分解,
12、对另两项提取公因式,再提取即可因式分解【详解】解:,故答案为:【点睛】本题主要考查了提取公因式法以及公式法分解因式,解题的关键是正确运用公式法分解因式5、2022【分析】根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可【详解】故填“2022”【点睛】本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键三、解答题1、(1);(2)【分析】(1)根据题中的方法,适当加减适合的数,再提取公因式,将各式分解即可;(2)根据题中的方法分解因式即可【详解】解:(1);(2)【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式进行因式分解
13、2、(1)483;1126;(2)143或247【分析】(1)根据材料定义直接计算即可;(2)首先结合定义求出,然后根据“能被26整除”列出表达式,并分离整数部分,对剩余部分结合数字的性质进行分类讨论求解即可【详解】解:(1);故答案为:483;1126;(2)根据“潜力数”的定义知为三位数,能被26整除,应为整数,分离整数部分,整理得:,由题意知,均为整数,为整数,则满足为整数即可,26为偶数,应满足为偶数,又由题意,为奇数,为偶数,12为偶数,要使得为偶数,则应满足为奇数,可取的数为:1;3;5;7,由“潜力数”定义知的百位数字不超过4,可取的数为:0;1;2;3,分类讨论如下:当,时,此
14、时,任意奇数均能满足为整数,即满足能被26整除,此时,;当,时,要使得为整数,即为整数,不妨设,其中为整数,则,由于为整数,则此时不可能为整数,与为奇数矛盾,假设不成立,排除;同理,当,时,;当,时,;此时,以上两种情况均不存在奇数使得为整数,排除;当,时,当,时,此时,不存在奇数使得为整数,排除;当,时,此时,任意奇数均能满足为整数,满足题意,此时,;当,时,此时,不存在奇数使得为整数,排除;当,时,当,时,当,时,当,时,此时,以上四种情况均不存在奇数使得为整数,排除;当,时,当,时,当,时,当,时,此时,以上四种情况均不存在奇数使得为整数,排除;综上分析,有,或,时,满足能被26整除,且
15、为奇数,的值为143或247【点睛】本题考查因式分解和列举分类讨论,掌握讨论整除相关问题时,常用分离整数的方法,并熟练运用分类讨论的方法是解题关键3、(1);(2)【分析】(1)先提取公因式 再利用平方差公式分解因式即可;(2)先计算整式的乘法运算,再利用完全平方公式分解因式即可.【详解】解:(1) (2)【点睛】本题考查的是综合提公因式与公式法分解因式,掌握“利用平方差公式与完全平方公式分解因式”是解本题的关键.4、(1)n(m2)(n+1);(2)(a+2)2(a2)2【分析】(1)提取公因式,进行因式分解即可;(2)根据平方差公式以及完全平方公式因式分解即可【详解】(1)n2(m2)n(
16、2m)n2(m2)+n(m2)n(m2)(n+1);(2)(a2+4)216a2(a2+4)2(4a)2(a2+4a+4)(a24a+4)(a+2)2(a2)2【点睛】本题考查了因式分解,掌握提公因式法和公式法分解因式是解题的关键,注意分解要彻底5、(1);(2)(2m3)(2m3);a(xy)2【分析】(1)利用多项式除以单项式的计算法则求解即可;先利用平方差公式和多项式乘以多项式的计算法则去括号,然后合并同类项即可;(2)利用平方差公式分解因式即可;利用提取公因式和完全平方公式分解因式即可【详解】解(1)原式;原式;(2)原式=(2m)232=(2m3)(2m3) ;原式=a(x22xyy2)=a(xy)2【点睛】本题主要考查了分解因式,多项式除以单项式,整式的混合运算,熟知相关计算法则是解题的关键