《2021-2022学年人教版八年级数学下册第十七章-勾股定理专项攻克试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版八年级数学下册第十七章-勾股定理专项攻克试题(无超纲).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十七章-勾股定理专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,ACB90,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,
2、作直线MN交AB于点D,交BC于点E若AC3,AB5,则BE等于()A2BCD2、如图,在RtABC中,CBA60,斜边AB10,分别以ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5()A50B50C100D1003、如图,在RtDFE中,两个阴影正方形的面积分别为SA36,SB100,则直角三角形DFE的另一条直角边EF的长为( )A5B6C8D104、如图,在ABC中,BC2,C45,若D是AC的三等分点(ADCD),且ABBD,则AB的长为( )ABCD5、已知直角三角形的斜边长为5cm,周长为12cm,则这个
3、三角形的面积( )ABCD6、如图,一张直角三角形纸片,两直角边AC=4cm,BC=8cm,将ABC折叠,点B与点A重合,折痕为DE,则DE的长为( )ABCD57、如图,在三角形,是上中点,是射线上一点是上一点,连接,点在上,连接,则的长为( )AB8CD98、有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上“生长”出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图所示的形状图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了888次后形成的图形中所有的正方形的面积和是( )A445B887C888D8899、如图,在RtABC
4、中,ABC=90,AC=10,AB=6,则图中五个小直角三角形的周长之和为( )A14B16C18D2410、在中,的对边分别为,则c的长为( )A2BC4D4或第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,ABAC,BAC90,点D、点E在直线BC上,点F为AE上一点,连接BF,分别交AD、AC于点G、点H,若BADCAE,AGHE,AF+ADBF,AC3,则AE的长为 _2、把由5个小正方形组成的十字形纸板(如图)剪开,使剪成的若干块能够拼成一个大正方形最少只需要剪_刀3、如图,在ABC中,D是AC边上的中点,连接BD,把BDC沿BD翻折,得到B
5、DC,DC与AB交于点E,连接AC,若ADAC2,BD3,则点D到BC的距离为_4、在平面直角坐标系中,长方形ABCD按如图所示放置,O是AD的中点,且A、B、C的坐标分别为(5,0),(5,4),(5,4),点P是BC上的动点,当ODP是腰长为5的等腰三角形时,则点P的坐标为_ 5、如图,已知ABC 中,ABC90,以ABC的各边为边,在ABC外作三个正方形,S1,S2,S3分别表示这三个正方形的面积,若S181,S2225,则BC_三、解答题(5小题,每小题10分,共计50分)1、(1)如图1,四边形ABCD的对角线ACBD于点O判断AB2+CD2与AD2+BC2的数量关系,并说明理由(2
6、)如图2,分别以RtABC的直角边AB和斜边AC为边向外作正方形ABDM和正方形ACEN,连接BN,CM,交点为O判断CM,BN的关系,并说明理由连接MN若AB2,BC3,请直接写出MN的长2、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标 3、(阅读理解)我国古人运用各种方法证明勾股定理,如图,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形其中四个直角三角形直角边长分别为、,斜边长为图中大正方形的面积可表示为,也可表示为,即,所以(尝试
7、探究)美国第二十任总统伽菲尔德的“总统证法”如图所示,用两个全等的直角三角形拼成一个直角梯形,其中,根据拼图证明勾股定理(定理应用)在中,、所对的边长分别为、求证: 4、如图,在44的正方形网格中,每个小正方形的边长均为1(1)请在所给网格中画一个边长分别为,的三角形;(2)此三角形的面积是 5、ABC和DBE都是以点B为顶点的等腰直角三角形,ABC=DBE= 90,DBE可以点B为旋转中心进行旋转 (1)如图1,当边BD恰好在ABC的BC边上时,连接 AD ,若BE=1,AD= 2求线段DC的长; (2)如图2,当边BD旋转至ABC外时,连接CD、AD、CE ,其中AD与CE相交于点F求证:
8、CE AD ; (3)如图3,F为AC的中点,当边BD旋转至ABC内时,连接AD、CE、FD,并在FD的延长线上取一点G,连结CG,使CGCE求证:FDA=CGF -参考答案-一、单选题1、C【分析】连接EA,根据勾股定理求出BC,根据线段垂直平分线的性质得到EAEB,根据勾股定理列出方程,解方程即可【详解】解:连接EA,ACB90,AC3,AB5,BC4,由作图可知,MN是线段AB的垂直平分线,EAEB,则AC2+CE2AE2,即32+(4BE)2BE2,解得,BE,故选:C【点睛】本题考查了线段垂直平分线的作法和性质、勾股定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关
9、键2、B【分析】根据题意过D作DNBF于N,连接DI,进而结合全等三角形的判定与性质得出S1+S2+S3+S4+S5RtABC的面积4进行分析计算即可.【详解】解:在RtABC中,CBA60,斜边AB10,BCAB5,AC5,过D作DNBF于N,连接DI,在ACB和BND中,ACBBND(AAS),同理,RtMNDRtOCB,MDOB,DMNBOC,EMDO,DNBCCI,DNCI,四边形DNCI是平行四边形,NCI90,四边形DNCI是矩形,DIC90,D、I、H三点共线,FDIO90,EMFDMNBOCDOI,FMEDOI(AAS),图中S2SRtDOI,SBOCSMND,S2+S4SRt
10、ABCS3SABC,在RtAGE和RtABC中,RtAGERtACB(HL),同理,RtDNBRtBHD,S1+S2+S3+S4+S5S1+S3+(S2+S4)+S5RtABC的面积+RtABC的面积+RtABC的面积+RtABC的面积RtABC的面积4552450故选:B【点睛】本题考查勾股定理的应用和全等三角形的判定,解题的关键是将勾股定理和正方形的面积公式进行灵活的结合和应用3、C【分析】根据正方形面积公式可得,然后利用勾股定理求解即可【详解】解:由题意得:,DEF是直角三角形,且DEF=90,故选C【点睛】本题主要考查了以直角三角形三边为边长的图形面积,解题的关键在于能够熟练掌握勾股定
11、理4、B【分析】作BEAC于E,根据等腰三角形三线合一性质可得AE=DE,根据C45,得出EBC=180-C-BEC=180-45-90=45,可得BE=CE,利用勾股定理求出CE=BE=2,根据D是AC的三等分点得出AE=DE=CD,求出CD=1,利用勾股定理即可【详解】解:作BEAC于E,ABBD,AE=DE,C45,EBC=180-C-BEC=180-45-90=45,BE=CE, 在RtBEC中,CE=BE=2,D是AC的三等分点,CD=,AD=AC-CD=,AE=DE=CD,CE=CD+DE=2CD=2,CD=1,AE=1,在RtABE中,根据勾股定理故选B【点睛】本题考查等腰三角形
12、的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键5、C【分析】设该直角三角形的两条直角边分别为、,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出的值,根据直角三角形的面积公式计算即可【详解】解:设该直角三角形的两条直角边分别为、,根据题意可得:将两边平方,得该直角三角形的面积为故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键6、B【分析】由翻折易得DB=AD,根据勾股定理即可求得CD长,再在RtBDE中,利用勾股定理即可求解【详解】
13、解析:由折叠可知,AD=BD,DEAB, BE=AB设BD为x,则CD=8-x,C=90,AC=4,BC=8,AC2+BC2=AB2 AB2=42+82=80,AB=,BE=,在RtACD中,AC2+CD2=AD2 ,42+(8-x)2=x2,解得x=5,在RtBDE中,BE2+DE2=BD2,即()2+DE2=52,DE=, 故选:B【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟记翻折前后对应边相等是解题的关键7、D【分析】延长EA到K,是的AK=AG,连接CK,先由勾股定理的逆定理可以得到ABC是等腰直角三角形,BAC=90,ACB=ABC=45,由BF=FE,得到FBE=FEB,设
14、BFE=x,则,然后证明CB=FC=FE,得到FBC=FCA,AFB=AFC则,即可证明,推出;设,证明ABGACK,得到,即可推出ECK=K,得到EK=EC,则,由此即可得到答案【详解】解:延长EA到K,是的AK=AG,连接CK,在三角形,ABC是等腰直角三角形,BAC=90,ACB=ABC=45,BF=FE,FBE=FEB,设BFE=x,则,H是BC上中点,F是射线AH上一点,AHBC,AH是线段BC的垂直平分线,FAC=45,CB=FC=FE,FBC=FCA,AFB=AFC,设,AG=AK,AB=AC,KAC=GAB=90,ABGACK(SAS),ECK=K,EK=EC,故选D【点睛】本
15、题主要考查了勾股定理和勾股定理的逆定理,等腰三角形的性质与判定,线段垂直平分线的性质与判定,全等三角形的性质与判定,三角形内角和定理等等,熟知相关知识是解题的关键8、D【分析】根据勾股定理,发现:经过一次生长后,两个小正方形的面积和等于第一个正方形的面积,故经过一次生长后,所有正方形的积和等于2;依此类推,经过n次生长后,所有正方形的面积和等于第一个正方形的面积的(n1)倍【详解】解:根据勾股定理以及正方形的面积公式,可以发现:经过次生长后,所有正方形的面积和等于第一个正方形的面积的倍,生长次后,变成的图中所有正方形的面积,生长了888次后形成的图形中所有的正方形的面积和是,故选:【点睛】本题
16、考查了勾股定理,如果直角三角形的两条直角边分别是,斜边是,那么9、D【分析】由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长【详解】解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为ACBCAB,BC,五个小直角三角形的周长之和为ACBCAB24故选:D【点睛】主要考查了勾股定理的知识和平移的性质,难度适中,需要注意的是:平移前后图形的大小、形状都不改变10、D【分析】根据是直角边或斜边分别根据勾股定理计算即可;【详解】在中,的对边分别为,当是一条直角边时,;当是斜边时,;c的长为4或故选D
17、【点睛】本题主要考查了勾股定理的应用,准确计算是解题的关键二、填空题1、【分析】过点C作CIBE交AE于I,即可证明ABDACI得到AI=AD,ADB=AIC,BD=CI;延长FA到K使得AK=AD=AI,连接KB,KD,DI,可证ADK和ADI都是等腰直角三角形,从而推出DIC=KDB;证明KDBDIC得到KBD=DCI=90,得到BKE+E=90,KBF+EBF=90,由BF=AF+AD,得到BF=AF+AK=KF,可推出E=EBF,由三角形外角的性质得到BFA=E+EBF=2E,再由AGH=E,GAF=90,可得E=30,过点A作AMBE于M,然后利用勾股定理求解即可【详解】解:如图所示
18、,过点C作CIBE交AE于I,ICD=90,AB=AC,BAC=90,ABC=ACB=45,ACI=45,ABD=ACI,在ABD和ACI中, ,ABDACI(ASA),AI=AD,ADB=AIC,BD=CI,延长FA到K使得AK=AD=AI,连接KB,KD,DI,AKD=ADK,ADI=AID,AKD+KDI+AID=180,ADK+ADI=90,即KDI=90,BAD=CAE,BAC=90,BAD+CAD=CAE+CAD=90,即DAI=90,ADK和ADI都是等腰直角三角形,DKI=DIK=ADK=45,KD=ID,BDK+ADK=DIK+DIC,DIC=KDB,在KDB和DIC中,KD
19、BDIC(SAS),KBD=DCI=90,BKE+E=90,KBF+EBF=90,BF=AF+AD,BF=AF+AK=KF,BKF=KBF,E=EBF,BFA=E+EBF=2E,AGH=E,GAF=90,3E=90,E=30,过点A作AMBE于M,ACM=45,MAC=45,ACM=MAC,AM=CM,故答案为:【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,三角形外角的性质,直角三角形两锐角互余,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件2、2【分析】利用使剪成的若干块能够拼成一个大正方形,结合图形得出即可【详解
20、】解:如图所示:由5个小正方形组成的十字形纸板(如图1)剪开,使剪成的若干块能够拼成一个大正方形,正方形的边长为:最少只需剪2刀故答案为:2【点睛】此题主要考查了图形的剪拼,勾股定理及无理数的计算,结合利用勾股定理得到四边形四条边相等是解题关键3、【分析】根据题意连接CC,交BD于点M,过点D作DHBC于点H,由翻折知,BDCBDC,BD垂直平分CC,证ADC为等边三角形,利用解直角三角形求出DM=1,CM=DM=,BM=2,在RtBMC中,利用勾股定理求出BC的长,在BDC中利用面积法求出DH的长,则可得出答案【详解】解:如图,连接CC,交BD于点M,过点D作DHBC于点H,AD=AC=2,
21、D是AC边上的中点,DC=AD=2,由翻折知,BDCBDC,BD垂直平分CC,DC=DC=2,BC=BC,CM=CM,AD=AC=DC=2,ADC为等边三角形,ADC=ACD=CAC=60,DC=DC,DCC=DCC=60=30,在RtCDM中,DCC=30,DC=2,DM=1,CM=DM=,BM=BD-DM=3-1=2,在RtBMC中,BC=,SBDC=BCDH=BDCM,DH=,DBC=DBC,点D到BC的距离为故答案为:【点睛】本题考查三角形翻折问题和解直角三角形以及勾股定理等,解题的关键是掌握相关性质并通过面积法求线段的长度4、 (2,4)或(3,4)或(3,4)【分析】先根据题意得到
22、OD=OA=5,CD=4,然后分当时和当时进行讨论求解即可【详解】解:四边形ABCD是长方形,A、B、C的坐标分别为(5,0),(5,4),(5,4),OD=OA=5,CD=4,如图所示,当时,过点作轴于E,的坐标为(-3,4),同理可求出的坐标为(3,4);如图所示,当时,设CD于y轴交于F,则CF=5,OF=4,的坐标为(-2,4),综上所述,点P的坐标为(2,4)或(3,4)或(3,4),故答案为:(2,4)或(3,4)或(3,4)【点睛】本题主要考查了坐标与图形,勾股定理,等腰三角形的定义,解题的关键在于能够熟练掌握等腰三角形的定义5、12【分析】根据勾股定理得到AC2+BC2=AB2
23、,再由正方形的面积公式计算即可得到答案【详解】解:ABC=90,由勾股定理得,AC2+BC2AB2,BC=12故答案为:12【点睛】本题主要考查的是勾股定理和算术平方根,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2三、解答题1、(1);(2) ,CMBN;【分析】(1)根据勾股定理得到 ,同理求出即可求解;(2)证明即可得到;进而得到CMBN,在四边形CMBN中,根据(1)求得的结论即可求出MN的长【详解】解:(1)ACBD, ,在中, ,在中, ,在中, ,在中, , ,即 ;(2)四边形MDBA和四边形ACEN为正方形, , ,即 , , , , , , ,
24、,CMBN,综上,CMBN;在四边形MBCN中,MCBN,由(1)知 , , , , , 【点睛】本题考查勾股定理,三角形全等的判定与性质,熟练掌握勾股定理,三角形全等的判定与性质是解题关键2、(1)见解析;(2)(0,)【分析】(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标【详解】解:(1)如图,点P即为所求;(2)A的坐标(0,6),点B
25、的坐标(3,0),OA=6,OB=3,PA=PB=OA-OP=6-OP,PB2-OP2=OB2,(6-OP)2-OP2=32,解得OP=,点P的坐标为(0,)【点睛】本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质3、尝试探究:证明见解析;定理应用:证明见解析【分析】尝试探究:根据全等三角形性质,得,结合题意,根据直角三角形两锐角互余的性质,推导得;结合梯形、三角形面积计算公式,通过计算即可证明;定理应用:根据提取公因式、平方差公式的性质分析,即可完成证明【详解】尝试探究:,直角梯形的面积可以表示为,也可以表示为,整理,得定理应用:在中,;【点睛】本
26、题考查了勾股定理、直角三角形、全等三角形、平方差公式的知识;解题的关键是熟练掌握全等三角形、直角三角形两锐角互余、平方差公式的性质,从而完成求解4、(1)画图见解析;(2)【分析】(1)利用勾股定理在网格中确定再顺次连接即可;(2)利用长方形的面积减去周围三个三角形的面积即可.【详解】解:(1)如图,即为所求作的三角形,其中: (2) 故答案为:【点睛】本题考查的是网格中作三角形,勾股定理的应用,网格三角形的面积的计算,掌握“利用勾股定理求解网格三角形的边长”是解本题的关键.5、(1)(2)见解析(3)见解析【分析】(1)利用等腰直角三角形的性质与勾股定理求出AB,故可求出CD;(2)设AD、
27、BC交于O点,证明ABDCBE,再利用三角形的内角和得到CFO=ABO=90,故可求解;(3)延长GE至H,令HE=GE,证明AHFCGF,得到H=G,AH=CG,再由ABDCBE得到AD=CE,故可得到AD=CG=AH,则FDA=H=CGF,即可求解【详解】解:(1)ABC和DBE都是以点B为顶点的等腰直角三角形BD=BE=1ABC = 90AB=BCCD=BC-BD=;(2)设AD、BC交于O点ABC和DBE都是以点B为顶点的等腰直角三角形,ABC=DBE= 90,AB=CB,DB=EB,ABC=DBE= 90ABC+CBD=DBE+CBDABD=CBEABDCBE(SAS)OAB=OCFAOB=COFCFO=ABO=90ADCE;(3)如图,延长GE至H,令HE=GEF点是AC中点AF=CE又HFA=GFCAHFCGFH=G,AH=CG由(2)同理可得ABDCBEAD=CECE=CGAD=CG=AHFDA=H=CGF 即FDA=CGF 【点睛】此题主要考查等腰三角形的性质、全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理,根据图形的特点作辅助线求解