【六年级数学人教版上册复习资料】-六年级语文复习重点.docx

上传人:知****量 文档编号:28147966 上传时间:2022-07-26 格式:DOCX 页数:13 大小:21.04KB
返回 下载 相关 举报
【六年级数学人教版上册复习资料】-六年级语文复习重点.docx_第1页
第1页 / 共13页
【六年级数学人教版上册复习资料】-六年级语文复习重点.docx_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《【六年级数学人教版上册复习资料】-六年级语文复习重点.docx》由会员分享,可在线阅读,更多相关《【六年级数学人教版上册复习资料】-六年级语文复习重点.docx(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【六年级数学人教版上册复习资料】 六年级语文复习重点 六年级数学人教版上册复习资料有哪些?以下是小编分享给大家的六年级数学人教版上册复习资料的资料,希望可以帮到你! 六年级数学人教版上册复习资料一 分数乘法 (一)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (二)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数

2、(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (三)、分数混合运算的运算顺序和整数的运算顺序相同。 (四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:(a+b)c=ac+bcac+bc=(a+b)c 六年级数学人教版上册复习资料二 分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面 2、求一个数的几倍:一个数几倍;求一个数的几分之几是多少:一个数。 3、写数量关系式技巧: (1)“的

3、”相当于“”“占”、“是”、“比”相当于“=” (2)分率前是“的”:单位“1”的量分率=分率对应量 (3)分率前是“多或少”的意思:单位“1”的量(1分率)=分率对应量 六年级数学人教版上册复习资料三 倒数 1、倒数的意义:乘积是1的两个数互为倒数。 强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。 2、求倒数的方法: (1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数:把小数化为分数,再求倒数。 3、1的倒

4、数是1;0没有倒数。因为11=1;0乘任何数都得0,(分母不能为0) 4、对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是; 5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 六年级数学人教版上册复习资料四 分数除法 一、分数除法 1、分数除法的意义: 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。 3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数; (2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。 4、“”

5、叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。 二、分数除法解决问题 (未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。) 1、数量关系式和分数乘法解决问题中的关系式相同: (1)分率前是“的”:单位“1”的量分率=分率对应量 (2)分率前是“多或少”的意思:单位“1”的量(1分率)=分率对应量 2、解法:(建议:最好用方程解答) (1)方程:根据数量关系式设未知量为X,用方程解答。 (2)算术(用除法):分率对应量对应分率=单位“1”的量 3、求一个数是另一个数的几分之几:就一个数另一个数 4、求一个数比另一个数多(

6、少)几分之几: 求多几分之几:大数小数1求少几分之几:1-小数大数 或求多几分之几(大数-小数)小数求少几分之几:(大数-小数)大数 三、比和比的应用 (一)、比的意义 1、比的意义:两个数相除又叫做两个数的比。 2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 例如15:10=1510=(比值通常用分数表示,也可以用小数或整数表示) 前项比号后项比值 3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程速度=时间。 4、区分比和比值 比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

7、比值:相当于商,是一个数,可以是整数,分数,也可以是小数。 5、根据分数与除法的关系,两个数的比也可以写成分数形式。 6、比和除法、分数的联系: 比前项比号“:”后项比值 除法被除数除号“”除数商 分数分子分数线“”分母分数值 7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。 8、根据比与除法、分数的关系,可以理解比的后项不能为0。 体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。 (二)、比的基本性质 1、根据比、除法、分数的关系: 商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。 分数的基本性质:分数的分子和分母

8、同时乘或除以相同的数时(0除外),分数值不变。 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。 2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。 3、根据比的基本性质,可以把比化成最简单的整数比。 4.化简比: 用比的前项和后项同时除以它们的最大公因数。 (1)两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。 两个小数的比:向右移动小数点的位置,先化成整数比再化简。 (2)用求比值的方法。注意:最后结果要写成比的形式。 如:1510=1510=32 5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫

9、做按比例分配。 如:已知两个量之比为,则设这两个量分别为。 6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4) 工作总量一定,工作效率和工作时间成反比。 (如:工作总量相同,工作时间比是3:2,工作效率比则是2:3) 六年级数学人教版上册复习资料五 圆 一、认识圆 1、圆的定义:圆是由曲线围成的一种平面图形。 2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。 一般用字母O表示。它到圆上任意一点的距离都相等. 3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。 把圆规两脚分开,两脚之间的距离就是圆的半径。 4、直径:通

10、过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。 直径是一个圆内最长的线段。 5、圆心确定圆的位置,半径确定圆的大小。 6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。 7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。 用字母表示为:d=2r或r= 8、轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。 折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线) 9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。 10、只有1一条对称轴的图形有:角、等腰三角形

11、、等腰梯形、扇形、半圆。 只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形 只有4条对称轴的图形是:正方形; 有无数条对称轴的图形是:圆、圆环。 二、圆的周长 1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。 2、圆周率实验: 在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。 发现一般规律,就是圆周长与它直径的比值是一个固定数()。 3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。 用字母(pai)表示。 (1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。 圆周率是一个无限不循环小数。在计算

12、时,一般取3.14。 (2)、在判断时,圆周长与它直径的比值是倍,而不是3.14倍。 (3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。 4、圆的周长公式:C=dd=C 或C=2rr=C2 5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。 在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。 6、区分周长的一半和半圆的周长: (1)周长的一半:等于圆的周长2计算方法:2r2即r (2)半圆的周长:等于圆的周长的一半加直径。计算方法:r+2r 三、圆的面积 1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。 2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形

13、。顶点在圆心的角叫做圆心角。 3、圆面积公式的推导: (1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。 (2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。 (3)、拼出的图形与圆的周长和半径的关系。 圆的半径=长方形的宽 圆的周长的一半=长方形的长 因为:长方形面积=长宽 所以:圆的面积=圆周长的一半圆的半径 S圆=rr 圆的面积公式:S圆=r2 4、环形的面积: 一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.) S环=R2-r2或 环形的面积公式:S环=(R2-r2)。 5、一个圆,半径扩大或缩小

14、多少倍,直径和周长也扩大或缩小相同的倍数。 而面积扩大或缩小的倍数是这倍数的平方倍。例如: 在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。 6、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。例如: 两个圆的半径比是23,那么这两个圆的直径比和周长比都是23,而面积比是49 7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4 8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。 9、确定起跑线: (1)、每条跑道的长度=两个半圆形跑道合成的圆的周长+两个直道的长度。 (2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同) (3)、每相邻两个跑道相隔的距离是:2跑道的宽度 (4)、当一个圆的半径增加a厘米时,它的周长就增加2a厘米;当一个圆的直径增加a厘米时,它的周长就增加a厘米。 11、常用各值结果: =3.14 2=6.28 3=9.42 5=15.7 6=18.84 7=21.98 9=28.26 10=31.4 16=50.24 36=113.04 64=200.96 96=301.44 4=12.568=25.1225=78.5 第 13 页 共 13 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁