2021-2022学年基础强化沪科版九年级数学下册第24章圆难点解析试卷.docx

上传人:知****量 文档编号:28147083 上传时间:2022-07-26 格式:DOCX 页数:30 大小:1.07MB
返回 下载 相关 举报
2021-2022学年基础强化沪科版九年级数学下册第24章圆难点解析试卷.docx_第1页
第1页 / 共30页
2021-2022学年基础强化沪科版九年级数学下册第24章圆难点解析试卷.docx_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《2021-2022学年基础强化沪科版九年级数学下册第24章圆难点解析试卷.docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化沪科版九年级数学下册第24章圆难点解析试卷.docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的个数有( )方程的两个实数根的和等于1;半圆是弧;正八边形是中心对称图形;“抛掷3枚质地均匀的硬币全部正

2、面朝上”是随机事件;如果反比例函数的图象经过点,则这个函数图象位于第二、四象限A2个B3个C4个D5个2、计算半径为1,圆心角为的扇形面积为( )ABCD3、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A直径所对圆周角为B如果点在圆上,那么点到圆心的距离等于半径C直径是最长的弦D垂直于弦的直径平分这条弦4、已知O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与O的位置关系是( )A相离B相切C相交D相交或相切5、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )A平移B翻折C旋转D以上三种都不对6、如图,与的两边分别相切,其中OA边与相切于点P若

3、,则OC的长为( )A8BCD7、如图,将OAB绕点O逆时针旋转80得到OCD,若A的度数为110,D的度数为40,则AOD的度数是( )A50B60C40D308、如图,是的直径,、是上的两点,若,则( )A15B20C25D309、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )A60B90C120D18010、如图,ABC外接于O,A30,BC3,则O的半径长为( )A3BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角_度2、如图,在ABC中,C90,AB=10,在同一平面内,点O到点

4、A,B,C的距离均等于a(a为常数)那么常数a的值等于_3、若扇形的圆心角为60,半径为2,则该扇形的弧长是_(结果保留)4、如图,将RtABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,ABC38,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 _5、如图,以面积为20cm2的RtABC的斜边AB为直径作O,ACB的平分线交O于点D,若,则ACBC_三、解答题(5小题,每小题10分,共计50分)1、如图,AB是O的直径,弦CDAB于点E,AM是ACD的外角DAF的平分线(1)求证:AM是O的切线;(2)连

5、接CO并延长交AM于点N,若O的半径为2,ANC = 30,求CD的长2、如图,和中,连接,点M,N,P分别是的中点(1)请你判断的形状,并证明你的结论(2)将绕点A旋转,若,请直接写出周长的最大值与最小值3、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQPOPQ且PO2,我们称点P是线段OQ的“潜力点”已知点O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_;(2)若点P在直线yx上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;(3)直线y2xb与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点

6、”时,直接写出b的取值范围4、在平面内,给定不在同一直线上的点A,B,C,如图所示点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,ABC的平分线交图形G于点D,连接AD,CD求证:AD=CD5、在平面直角坐标系xOy中,的半径为2点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”(1)如图,点A,B,C,D横、纵坐标都是整数在点B,C,D中,与点A组成的“成对关联点”的点是_;(2)点在第一象限,点F与点E关于x轴对称若点E,F是的“成对关联点”,直接写出t的取值范围;(3)点G在y轴上若

7、直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围-参考答案-一、单选题1、B【分析】根据所学知识对五个命题进行判断即可【详解】1、=12-41=-30,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元二次函数判别式、弧的定义、中心对称图

8、形判断、随机事件理解、反比例函数图像,掌握这些是本题关键2、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键3、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.4、B【分析】圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与

9、圆相交,根据原理直接作答即可.【详解】解: O的直径为10cm,圆心O到直线l的距离为5cm, O的半径等于圆心O到直线l的距离, 直线l与O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.5、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键6、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到CPO=90,COP=45,由此推出CP=OP=4,再根据勾股定理求解即可【详解】解

10、:如图所示,连接CP,OA,OB都是圆C的切线,AOB=90,P为切点,CPO=90,COP=45,PCO=COP=45,CP=OP=4,故选C【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键7、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80得到OCD, A的度数为110,D的度数为40, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.8、C【分析】根据圆周角定理得到BDC的度数,再根据直径所

11、对圆周角是直角,即可得到结论【详解】解:BOC=130,BDC=BOC=65,AB是O的直径,ADB=90,ADC=90-65=25,故选:C【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键9、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120故选C【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键10、A【分析】分析:连接OA、OB,根据圆周角定

12、理,易知AOB=60;因此ABO是等边三角形,即可求出O的半径【详解】解:连接BO,并延长交O于D,连结DC,A=30,D=A=30,BD为直径,BCD=90,在RtBCD中,BC=3,D=30,BD=2BC=6,OB=3故选A【点睛】本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30角所对直角三角形性质是解题的关键二、填空题1、60【分析】根据弧长公式求解即可【详解】解:,解得,故答案为:60【点睛】本题考查了弧长公式,灵活应用弧长公式是解题的关键.2、5【分析】直接利用直角三角形斜边上

13、的中线等于斜边的一半即可求解【详解】解:根据直角三角形斜边上的中线等于斜边的一半,即可知道点到点A,B,C的距离相等,如下图:,故答案是:5【点睛】本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解3、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算【详解】解:依题意,n=,r=2,扇形的弧长=故答案为:【点睛】本题考查了弧长公式的运用关键是熟悉公式:扇形的弧长=4、76或142【分析】设AB的中点为O,连接OD,则BOD为点D在量角器上对应的角,根据圆周角定理得BOD=2BCD,根据等腰三角形的性质分BC为底边和BC为腰求BCD的度数即可【

14、详解】解:设AB的中点为O,连接OD,则BOD为点D在量角器上对应的角,RtABC的斜边AB与量角器的直径恰好重合,A、C、B、D四点共圆,圆心为点O,BOD=2BCD,若BC为等腰三角形的底边时,如图射线CD1,则BCD1=ABC=38,连接OD1,则BOD1=2BCD1=76;若BC为等腰三角形的腰时,当ABC为顶角时,如图射线CD2,则BCD2=(180-ABC)2=71,连接OD2,则BOD2=2BCD2=142,当ABC为底角时,BCD=180-2ABC=104,不符合题意,舍去,综上,点D在量角器上对应的度数是76或142,故答案为:76或142【点睛】本题考查圆周角定理、等腰三角

15、形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键5、#【分析】连接,延长交于点,连接,先根据圆周角定理和圆的性质可得,再根据特殊角的三角函数值可得,从而可得,作,交于点,从而可得,然后在中,利用直角三角形的性质和勾股定理可得,设,从而可得,利用直角三角形的面积公式可求出的值,由此即可得【详解】解:如图,连接,延长交于点,连接,都是的直径,在中,平分,且,如图,作,交于点,在中,设,则,解得或(不符题意,舍去),则,故答案为:【点睛】本题考查了特殊角的三角函数值、圆周角定理、含角的直角三角形的性质等知识点,通过作辅助线,构造直角三角形和等腰三角形是解题关键三

16、、解答题1、(1)见解析(2)CD=2【分析】(1)由题意易得BC=BD,DAM=DAF,则有CAB=DAB,进而可得BAM=90,然后问题可求证;(2)由题意易得CD/AM,ANC=OCE=30,然后可得OE=1,CE=,进而问题可求解(1)证明:AB是O的直径,弦CDAB于点EBC=BDCAB=DABAM是DAF的平分线DAM=DAFCAD+DAF=180DAB+DAM=90即BAM=90,ABAMAM是O的切线(2)解:ABCD,ABAM CD/AMANC=OCE=30在RtOCE中,OC=2OE=1,CE=AB是O的直径,弦CDAB于点ECD=2CE=2【点睛】本题主要考查切线的判定定

17、理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键2、(1)是等腰直角三角形,证明见解析(2)周长最小值为。最大值为【分析】(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题(1)连接BD,CE,如图, BD=CE,点M,N,P分别是的中点/,PN/BD,PN=BDPM=PN, PN/BDPNC=DBCMPN=MPD+DPN=ECA+ACD+PCN+PNC

18、=ACB+DBC+ABD=ACB+ABC=90 是等腰直角三角形;(2)由(1)知,是等腰直角三角形 的周长为 的周长为 当BD最小时即点D在AB上,此时周长最小,AB=8,AD=3BD的最小值为AB-AD=8-3=5周长最小为当点D在BA的延长线上时,BD最大,此时周长最大,BD=AB+AD=8+3=11周长最大为【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键3、(1);(2);(3)或【分析】(1)分别计算出OQ、PO和PQ的长度,比较即可得出答案;(2)先判断点P在以O为圆心,1为半径的圆外且

19、点P在线段OQ垂直平分线的左侧,结合PO2,点P在以O为圆心,2为半径的圆上或圆内,可得点P在如图所示的线段AB上(不包含点B),过作轴,过作轴,垂足分别为 再根据图形的性质求解 从而可得答案;(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而POPQ,点P在线段OQ垂直平分线的左侧,再分两种情况讨论:当时,当时,分别画出两种情况下的临界直线 再根据临界直线经过的特殊点求解的值,再确定范围即可.【详解】解:(1) O(0,0),Q(1,0), P1(0,-1),P2(,),P3(-1,1) 不满足OQPOPQ且PO2,所以不是线段OQ的“潜力点”,同

20、理: 所以不满足OQPOPQ且PO2,所以不是线段OQ的“潜力点”,同理: 所以满足:OQPOPQ且PO2,所以是线段OQ的“潜力点”,故答案为:P3(2)点P为线段OQ的“潜力点”,OQPOPQ且PO2,OQPO,点P在以O为圆心,1为半径的圆外POPQ,点P在线段OQ垂直平分线的左侧,而的垂直平分线为: PO2,点P在以O为圆心,2为半径的圆上或圆内又点P在直线yx上,点P在如图所示的线段AB上(不包含点B) 过作轴,过作轴,垂足分别为 由题意可知BOC和 AOD是等腰三角形, -xp-(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而POPQ,

21、点P在线段OQ垂直平分线的左侧当时,过时, 即函数解析式为: 此时 则 当与半径为2的圆相切于时,则 由 而 当时,如图,同理可得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而POPQ,点P在线段OQ垂直平分线的左侧,同理:当过 则 直线为 在直线上,此时 当过时, 则 所以此时: 综上:的范围为:1b或b-1【点睛】本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.4、见解析【分析】由题意画图,再根据圆周角定理的推论即可得证结论【详解】证明:根据题意作图如下:BD是

22、圆周角ABC的角平分线,ABD=CBD,AD=CD【点睛】本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键5、(1)B和C;(2);(3)【分析】(1)根据图形可确定与点A组成的“成对关联点”的点;(2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;(3)分类讨论:点G在上,点G在的下方和点G在的上方,构造的“成对关联点”,即可求出的取值范围【详解】(1)如图所示:在点B,C,D中,与点A组成的“成对关联点”的点是B和C,故答案为:B和C;(2)在直线上,点F与点E关于x轴对称,在直线,如下图所示:直线和与分别交于点,与直线分别交于,由题可得:,当点E在线段上时,有的“成对关联点”;(3)如图,当点G在上时,轴,在上不存在这样的矩形;如图,当点G在下方时,也不存在这样的矩形;如图,当点G在上方时,存在这样的矩形GMNH,当恰好只能构成一个矩形时,设,直线与y轴相交于点K,则,即,解得:或(舍),综上:当时,点G,H是的“成对关联点”【点睛】本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁