《遥感图像管理计划实习报告.doc》由会员分享,可在线阅读,更多相关《遥感图像管理计划实习报告.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、#+数字图像处理集中实习报告(2015-2016学年第2学期)专业班级:地信1302小组成员:曹晓东、傅文青、蔡雳鹏、黄亚阳评语:实习总成绩: 指导教师签名: 2016年04月01日项目一:遥感数据下载一、 实习时间及地点实习时间:2016年03月21日至04月22日实习地点:测绘学院四楼微机室二、 实习内容(一)、选定实验研究区和相关的两期或多期的数据(二)、遥感数据下载三、任务分工首先小组内讨论实习研究的区域以及两期数据的大致时间段间隔数据下载和图像增强:曹晓东遥感图像镶嵌和裁剪:黄亚阳遥感图像监督分类和动态监测:傅文青遥感影像专题地图制作综合:蔡雳鹏四、实习过程1 研究区及数据准备1.1
2、 实验研究区筛选从包含的地类、地物的种类尽可能的多的角度进行选择2 选择研究区影像的时间段2.1 选取的多大的时间跨度比较合适,可以使两期的影像较为明显3 在http:/glovis.usgs.gov/ 下载区域数据3.1 首先确认所用电脑是否安装有Java的JRE环境或者Java开发者工具包3.2 在USGS的官方网站上注册上自己的账户3.3 按事先选择的区域和时间间隔进行筛选,选择适合的时间段(尽量不少于4、5年)3.4 先去地理空间数据云网站去搜索好需要下载的时间段的地理数据,并按指定的云量进行筛选,然后记住相应的数据标识、条带号、行编号、中心经纬度等等,后到USGS的官方下载标准的数据
3、包。如图所示:3.5 针对网速的波动时间段,选择合适的时间段去下载实验区的数据(网速太慢的话只能回宿舍尝试自己的校园教育网)五、实习总结通过这次初步下载卫星遥感数据,让我个感觉自己进入了一个崭新的领域。还了解了通用遥感数据的下载流程,以及这些编号的基本含义,并且查了landsat卫星不同波段的不同用处,band1-band5和band7的空间分辨率为30米,band6的空间分辨率为60米还了解到了2003年Landsat-7的SLC故障后,采集的数据需要采用SLC-off模型校正。通过自己手动下载这些数据,深刻的体会到论坛的一些大牛说的有什么不懂的地方就查那些官方的文档,真的是这样。那就好像是
4、自己小时候的玩具说明书,告诉你怎么样用,怎么样玩的更流畅。总之,第一次自己找并用数据的实习,刚开始就学到了很多东西。项目二:遥感影像增强滤波处理一、 实习时间及地点实习时间:2016年3月23日实习地点:测绘学院四楼微机室二、 实习内容(一)、针对已有的遥感影像的特征选择合适的影像增强方法(二)、分别对已有的不同时期的影像进行规范化增强处理,选择合适的波段进行RGB合成图像,使影像范围内下垫面地物容易识别与提取。三、 任务分工如项目一的任务分工所述四、 实习过程1. 将下载的7幅图像在basic tools下拉菜单的layer stacking(堆处理)中进行图像融合,如图所示,再选择对应的坐
5、标系,命名新文件并存入指定的文件夹。2. 然后在transform选项卡中分别选择principal componentsforward PC rotationcompute new statistics and rotate和NDVI进行 主成分变换和NDVI增强。3. 最后进行波段相关性分析,在basic tools选项卡中选择statistics compute statistics项,看方差、直方图等分析数据,选择相关度最相近的三个波段,按假彩色合成的的方法来进行RGB色彩和成。成果如图:五、实习总结每个滤波处理都有自己的优势和不足,我们要善于利用每一种滤波的优势来增强图像从而让遥感图
6、像变得更加分明,易读。虽然软件操作就那么几步,甚至一两个按钮搞定的事情,但是我们还是学习过处理原理的。觉得这样好像在这个软件处理数据的时候我可以假想电脑是怎么处理它的。这样可以让自己的思路更加明朗清晰。通过这次的实习也让我们意识到,前辈们的高超技艺,将纷繁的算法集成于一个小小的按钮便可以完成的事情。无意间增强了我们学习编程二次开发的信心和决心。项目三:遥感图像镶嵌一、 实习时间及地点实习时间:2016年3月24日实习地点:测绘学院四楼微机室二、 实习内容在实际操作中掌握遥感影像处理知识,学会对遥感影像的相关处理工作。三、 任务分工如项目一的任务分工所述4、 实习过程基于地理坐标的镶嵌操作:1.
7、 打开ENVI软件,将两幅郑州遥感影像图导入Available Bands List中。2. 在ENVI主菜单Basic Tools菜单中选择MosaickingGeoreferenced,打开Map Based Mosaic窗口。3. 在Map Based Mosaic窗口中选中Import Import Files,加载需要进行镶嵌的影像数据。4. 加载完图像后,选中一幅图像,点击右键,选择Edit Entry,打开Entry窗口,将Data Value to Ignore改为0,羽化距离设置为10,将参考图像选为Fixed,其它图像全为Adjust。5.在Map Based Mosaic
8、窗口中选择File Apply,打开Mosaic Parameters窗口,将重采样改为三次卷积内插法(Cubic Convolution),像元大小设置为30米,输出影像mosaic.img。5、 实习总结通过此次镶嵌实验练习,在实验的过程中不断的遇到问题并且解决问题,学习了邻近影像之间的匹配镶嵌,认识了一些关于镶嵌处理的方法,为今后的影像处理奠定了一定的基础。项目四:遥感图像裁剪一、 实习时间及地点实习时间:2016年3月25日实习地点:测绘学院四楼微机室二、 实习内容 1.掌握用矢量裁剪遥感图像的原理方法; 2.熟练掌握有关遥感图像软件的性能和操作。三、 任务分工如项目一的任务分工所述4
9、、 实习过程1.在ENVI主菜单点选Fileopen image file,打开待裁剪影像。2.在ENVI主菜单点选Fileopen vector file,打开用arcgis软件中做好的郑州面要素文件来裁剪遥感影像图。3.在弹出的Available Vectors List 对话框中,点击File Export Layers to ROI,弹出select data file to associate with new ROIS 对话框,在此对话框中选择待裁剪影像,点OK,将导出的EVF矢量文件转换为ROI。4.在弹出的export evf layers to ROI对话框,点选:conve
10、rt all records of an EVF layer to one ROI,点OK。5.在ENVI软件主菜单Basic Tools下拉菜单选择Subset Data via ROIs,用ROI对融合后的影像mosaic2.img进行裁剪,最后得到裁剪的图像。5、 实习总结通过对ENVI软件的不断熟悉和操作,让我学到很多,ENVI作为对遥感学习的初步入门软件,熟练地掌握是必须具备的技能,在实验中,我遇到了很多困难,看到很多未知的,不解的知识,还有自己原先掌握的知识的困惑,通过与同学的交流学习解决其中的困难。知道了如何对一副遥感影像图进行裁剪,更加熟悉掌握了ENVI软件。项目五:遥感图像的
11、计算机自动分类及精度评价一、实习时间及地点实习时间:2016年3月25日和03月28日实习地点:测绘学院四楼微机室二、 实习内容(一)掌握遥感图像监督与非监督分类的基本原理;(二)得到给定区域内每一地类(农用地、建设用地、水体、不透水表面等)的面积;(三)掌握对分类结果进行精度评价的方法;(四)掌握相关软件的操作。三、任务分工如项目一的任务分工所述四、实习过程1 研究区及数据准备1.1 open image file打开增强后的两幅影像“200601”和“201001”,选择5、4、3波段合成彩色图像。 图4-1 波段列表1.2 根据图像的分辨率和实际情况将两幅图像都分为8类。 图4-2 5、
12、4、3波段彩色图2选择样本2.1 在image窗口中选择overlay菜单选择下面的ROI,打开ROI窗口。2.2在ROI Name中输入“河流湖泊”按回车键,在三个窗口间进行切换,选择“ZOOM”窗口为选择窗口,在image窗口中进行切换找到对应颜色区域(蓝色),然后在zoom窗口中进行放大然后选取部分区域。(注意均匀选取)2.3 选择“New Region”新建一个ROI,重复步骤2.2,分别选择林地、草地、居民地、工业用地、沙地、水田、耕地的样本,如图4-3所示: 图4-3 分类样本图3可分离性分析3.1在ROI Tool窗口中选择Options菜单下的compute ROI Separ
13、ability,在打开的窗口中选择“郑州200601”图层,选择所有ROI,点击OK,生成图4-4的分离矩阵,从图中可看出各样本可分离性不错,符合要求,如果值不符合需要进行合并或者重新分配。 图4-4 分离矩阵图4监督分类4.1在ENVI主菜单中选择classification-supervised-maximun likelihood,用监督分类中的最大似然对图像进行自动分类,打开图像选择窗口。4.2在打开的窗口中选择图像“200601”,点击确定,跳出ROI选择窗口,将所有的ROI都选择上将其输出到”监督分类”文件夹,命名为“2006”。得到下图列表: 图4-5 4.3重复上面步骤得到20
14、10年的监督分类图。5编辑分类结果5.3打开新生成的影像“2006”,在image窗口中选择overlay-classfication,选择2006,在打开的窗口中课对每一类地物进行颜色和名字的设置与更改。 图4-66精度验证6.1用混淆矩阵进行精度验证,打开classification-post classification-confusion matrix选择ROI进行精度验证。(由于没有验证数据,所以验证进度很高)7统计分析7.1打开classification-post classification-class statistics,选择生成的2006影像,点击确定,再选择原图像200
15、601点击OK,选择所有的ROI,将直方图等勾选上,得到下面的统计图: 图4-68裁剪8.1从图4-6可以看出,工业用地不符合实际情况,原因是没有对背景进行处理,所以须用矢量图重新裁剪,过程同遥感影像裁剪步骤。5、 实习总结本次实习内容为遥感影像的自动分类和精度评定,从实验课时的安排就能看出为这次课程设计的核心,也是这次课程设计的重点,我被分派到这一部分任务既感到高兴也感到责任重大,所高兴的是组员对我的信任,感到有压力的是怕自己做的不好影响到全组的成绩。就操作过程来说并不困难,难点在于ROI的选取,因为这次我们选择的是郑州市2006年和2010年的landsat5TM的影像,分辨率只有30米,
16、虽然经过增强地物相对较清晰,但是要把每一类都区分出来还是比较困难的。主要原因在于我们是第一次做这种遥感影像图,对地物的辨别大多是通过轮廓,所以很多都不知道是什么地物,只有通过百度地图谷歌地图一类的高分辨率影像找到对应位置进行判别。尽管如此,我在2010年第一次分类中。草地跟居民地还有林地的区分度还是达不到要求,不得已只能对三类重新分类。好在第二次选样本点更小心,课分离度都超过了1.8,可是进行统计的时候又发现在两个时相的影像中有一类地物严重偏多,后来发现是背景没有处理的原因,只能将分类图进行二次裁剪去除背景。总之这次实习内容并不复杂,监督分类与非监督分类的原理也较简单,关键在于细心和有耐心,虽
17、然简单,但是却会遇到很多问题和需要注意的地方,这也是我们实习的目的,遇到问题,解决问题才有进步。项目六:遥感影像专题地图制作一、 实习时间及地点实习时间:2016年3月29日至4月1号实习地点:测绘学院四楼微机室二、 实习内容遥感影像的专题地图制作三、 任务分工如项目一的任务分工所述四、实习过程1、 打开2006监督后裁剪.bli,此时图层种有9种符号映射。2、 在图层上点击鼠标右键,选择属性。在属性对话框中,选择符号系统,切换到符号系统面板。3、 在色彩映射表中,修改标注。按照图形中的颜色,分别将对应的颜色修改为背景、河流湖泊、林地、草地、居民地、工业用地、沙地、水田、耕地,点击确定。4、
18、将视图切换到布局试图,在布局视图上点击右键,选择属性。在格网选项卡上,点击新建格网,创建参考格网。在框架选项卡中,将背景改为浅蓝色,点击确定。5、 点击插入-标题,在文本框中输入“2006年3月土地利用分布图”,字体为宋体36号。6、 点击插入-图例,设置为三列,将背景改为蓝色。7、 点击插入-比例尺,选择单位为千米,点击确定,将比例尺放入图中合适位置。8、 点击插入-指北针,选择合适的指北针,点击确定,放于图中合适位置。9、 点击文件-地图文档属性,勾选存储数据源的相对路径名。10、 点击文件-导出地图,分辨率设为300,将地图导出。11、 采用相同的方法将另一幅影像“2010监督后裁剪”制
19、图后输出。实习成果如图: 五、实习总结制图综合在前一周刚做过实习,在制图方面并没有太大问题。但是在进行影像的监督分类时,由于考虑不充分,未能考虑影像的背景,导致分类后影像的背景和河流的颜色一样,在制图时无法将河流和背景分离开来。后来又给背景也分了一类才解决这个问题。通过此次实习,让我学到了很多课堂上更本学不到的东西,掌握了只有通过实际操作、自己动手才能学到的技术和能力。这让我清楚地感到了自己学习能力的不足,看清了自身的缺点,也让我认识到了无论做什么都应秉持仔细认真的态度,要有一种平和的心态和勤学好问的精神,不管遇到什么事都要主动地去思考,多和同学讨论,多向老师请教,不要太过急躁,要对自己所做事情负责,要做到“言必行,行必果” 不可抱有推脱或者完全依赖别人的想法。我认为只要付出了努力,认真地实践,不管结果如何我们都将有所收获。