《基于虚拟仪器的电阻炉温度控制系统设计说明.doc》由会员分享,可在线阅读,更多相关《基于虚拟仪器的电阻炉温度控制系统设计说明.doc(64页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 基于虚拟仪器的电阻炉温度控制系统56 / 64毕业设计(论文)原创性声明和使用授权说明原创性声明本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作与取得的成果。尽我所知,除文中特别加以标注和致的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得与其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了意。作 者 签 名:日 期:指导教师签名: 日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保
2、存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部容。作者签名: 日 期:学位论文原创性声明本人重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名: 日期: 年 月 日学位论文使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国
3、家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签名:日期: 年 月 日导师签名: 日期: 年 月 日注意事项1.设计(论文)的容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸
4、、程序清单等),文科类论文正文字数不少于1.2万字。3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体与大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订
5、摘要电阻炉被广泛地应用在工业生产中,它的温度控制效果直接影响到生产效率和产品质量,因而对温度控制系统的要求很高。目前工业电阻炉通常采用常规PID控制,PID控制器是最早发展起来的控制策略之一,具有结构简单、容易实现、控制效果好、鲁棒性强等特点,被广泛应用于工业过程控制,尤其适用于可建立精确数学模型的确定性控制系统,在工业过程控制中至今仍得到广泛应用。但是工业电阻炉的温度控制具有非线性、大惯性、大滞后等特点,难以对其建立精确的数学模型,因而常规PID控制难以取得良好的控制效果;本文采用增量式PID控制算法来进行PID参数的自动整定。作为计算机技术和现代仪器技术相结合的产物,虚拟仪器实现了在传统测
6、试理论和控制方法上的革命性突破。与传统仪器相比,虚拟仪器具有功能更丰富、处理速度更快、测量效率更高、可扩充性更好的优点。本文把虚拟仪器与智能温度控制相结合,用LabVIEW开发了一套自整定的PID控制算法的温度控制系统。论文概述了智能温度控制的发展与现状,介绍了虚拟仪器的发展与其突出特点。详细地论述了系统的设计与实现方法,其中包括数据采集、数据处理、数字滤波等功能模块的设计与实现。关键词:虚拟仪器;PID控制器;自整定Resistance Furnace Temperature Control SystemBased on Virtual InstrumentAbstractResistanc
7、e furnace was widely used in industrial production, whose effect of the temperature control has a direct impact on productivity and product quality, thus a high quality of temperature control system is demanded. Industry Resistance furnace used to use conventional PID control, PID controller is one
8、of the earliest control strategies and it is simple in structure, easyto implement,effective to control;it also has the characteristics of robustness.So it is widely used in industrial process control, in particular to establish a precise mathematical model, and industrial process control is still w
9、idely used. However, the industrys Resistance furnace with temperature control of nonlinear, large inertia, the characteristics oflarge time delay, it is difficult to establish its precise mathematical model of conventional PID control , thus it is difficult to achieve good control effect; In this p
10、aper, we use incremental PID control algorithm for auto-tuning parameters.As product of combinationof the computer technology and modernequipment technology,it make a revolutionary breakthrough from traditional test andmeasurement methods pared with traditional instruments, virtual instrument has a
11、more feature-rich, faster processing speed, more effective measurement, the advantage of better scalability.In this paper, the virtual instrument and intelligent temperature control is combined, we use LabVIEW to develop a set of self-tuning PID control algorithm of the temperature control system. P
12、aper provides an overview of the development of intelligent temperature control and the status , describes the development of virtual instrumentation and its salient features. Detailing the system design and implementation, including data acquisition, data processing, digital filtering and other fun
13、ctions of the Design and Implementation of modules. Keywords: virtual instrument; PID controller; self-tuning目录摘要IABSTRACTII第一章引言11.1 本课题的背景与意义11.2论文研究的主要容31.3文研究的重点和难点3第二章虚拟仪器与应用简介42.1虚拟仪器的概念42.2虚拟仪器的特点52.3虚拟仪器的组成52.4虚拟仪器的开发平台LabVIEW62.5 LabVIEW的程序构成72.6虚拟仪器与传统仪器的比较82.7虚拟仪器的应用9第三章温度传感器的分类与温度信号的检测12
14、3.1炉温度特性与其对象建模123.2 温度传感器的选用143.3炉热电偶测温173.4偶测温误差分析18第四章 PID控制算法简介204.1 PID控制和智能控制的介绍204.2数字PID控制算式234.3数字PID控制算式的改进264.4增量式PID 控制器的程序流程图30第五章电阻炉温度控制系统的硬件设计325.1控制系统的功能与结构325.2数据采集卡335.3系统设计原则35第六章电阻炉温度控制系统的软件设计366.1软件模块化设计方法概述366.2电阻炉温度控制系统软件总体设计376.3密码验证模块376.4数据采集模块386.4.1 A/D和D/A转换386.4.2数据采集396
15、.5信号处理模块406.6 PID控制器模块42第七章系统调试44参考文献47附录A:49附录B:52致53第一章 引言1.1 本课题的背景与意义随着工业的发展,对金属材料的性能提出了更多更高的要求,因而热处理技术也向着优质、高效、节能、无公害方向发展。在钢铁、机械、石油化工、电力、工业炉窑等工业生产中,温度是极为普遍又极为重要的热工参数之一,随着工业过程对控温精度要求的提高,测温围也随之变广,因此温度控制技术的研究是一个重要的研究课题。在工业电炉控制中温度的控制是十分重要的“温控过程要严格按照事先设定的温度曲线运行,如果意外掉电导致加热终止或控温精度低,都会导致工业加热的失败”,因此研究以工
16、业电阻炉为控制对象,以智能仪表为控制工具的温控系统具有一定的实际应用价值。随着计算机、通讯技术在工业自动化系统的广泛应用,工业仪表的功能越来越强大,在高新技术的推动下,作为工业主要技术工具的控制仪表正跨入真正的数字化、智能化、网络化时代。不仅各类测控设备是数字化的,而且可通过网络将分散的控制装置和各类智能仪表连接起来,实现工业生产过程的集散监控管理。电阻炉是一种具有纯滞后的大惯性系统,开关炉门、加热材料、环境温度以与电网电压等都影响控制过程,传统的电阻炉控制系统大多建立在一定的数学模型基础上,对被控对象中的非线性、时变性与随机干扰无能为力。电阻炉是热处理生产中应用最广的加热设备,这样加热时均温
17、过程的测量与控制就成为关键性的技术。首先,控温精度要高。其次,当生产环境发生变化而影响到控温精度时,要有合适的手段进行调整以达到精度要求。而且,为了方便进行工艺的研究,需要能保存温度数据。最后,根据生产中的实际情况,电热烧结和控制设备要求操作方便,易于维护,成本较低等等。电阻炉是利用电流通过电热体元件将电能转化为热能来加热或熔化工件物料的热加工设备。电阻炉和火焰比,热效率高,可达50%80%,热工制度容易控制,劳动条件好,炉体寿命长,适用于要求较严的工件的加热,但耗电费用高。按传热方式,电阻炉分为辐射式电阻炉和对流式电阻炉。辐射式电阻炉以辐射传热为主,对流传热作用较小;对流式电阻炉以对流传热为
18、主,通常称为空气循环电阻炉,靠热空气进行加热,炉温多低于650。按电热产生方式,电阻炉分为直接加热和间接加热两种。在直接加热电阻炉中,电流直接通过物料,因电热功率集中在物料本身,所以物料加热很快,适用于要求快速加热的工艺,例如锻造坯料的加热。这种电阻炉可以把物料加热到很高的温度,例如碳素材料石墨化电炉,能把物料加热到超过2500。直接加热电阻炉可作成真空电阻加热炉或保护气体电阻加热炉,在粉末冶金中,常用于烧结钨、钽、铌等制品。采用这种炉子加热时应注意:(1)物料加热均匀,要求物料各部位的导电截面和电导率一致;(2)由于物料自身电阻相当小,为达到所需的电热功率,工作电流相当大,因此送电电极和物料
19、接触要好,以免起电弧烧损物料,而且送电母线的电阻要小,以减少电路损失;(3)在供交流电时,要合理配置短网,以免感抗过大而使功率因数过低。大部分电阻炉是间接加热电阻炉,其中装有专门用来实现电-热转变的电阻体,称为电热体,由它把热能传给炉中物料。最常用的电热体是铁铬铝电热体、镍铬电热体、碳化硅棒和二硅化钼棒。根据需要,炉气氛可以是普通气氛、保护气氛或真空。一般电源电压220伏或380伏,必要时配置可调节电压的中间变压器。小型炉(10千瓦)单相供电,大型炉三相供电。对于品种单一、批料量大的物料,宜采用连续式炉加热。炉温低于700的电阻炉,多数装置鼓风机,以强化炉传热,保证均匀加热。用于熔化易熔金属(
20、铅、铅铋合金、铝和镁与其合金等)的电阻炉,可做成坩埚炉;或做成有熔池的反射炉,在炉顶上装设电热体。常用的温度控制方法有:电接点温度表温度控制、位式温度显示调节仪温度控制、PID连续电流输出温度显示调节仪表温度控制、PID连续电压输出温度显示调节仪表温度控制。这些温度控制方法大都是在工业生产现场安装温度控制仪表,通过提前设定温度控制的上下限值或PID控制参数,然后再将控制仪表投入使用,进行各种预定的控制。但若被控对象发生变化,难于实时的调整控制参数,不能满足实时控制的要求,而且温度变化曲线的记录不易实现。总之,我国的电阻炉的控制设备的现状不容乐观,它主要有以下特点:一小部分比较先进的设备和大部分
21、比较落后的设备并存。由于我国改革开放的发展,国引进和生产了少量的比较先进的控制设备,但是,整体上,我国的电阻炉控制系统比国外发达国家要落后四、五十年,占主导地位的是模拟仪表控制,这种系统的控制参数由人工选择,需要配置专门的仪表调试人员,费时、费力且不准确。控制精度依赖于试验者的调节,控制精度不高,一旦生产环境发生变化就需要重新设置。操作不方便,控制数据无法保存。因而,对生产工艺的研究很困难,因此造成产品质量低、废品率高、工作人员的劳动强度大、劳动效率低、这些都缩减了企业的效益。因此,本课题研究有关控制理论与算法,编制基于智能化的控温程序,配以相应的硬件装置,使得高温电阻炉按照预先给定的升温保温
22、曲线加热,达到提高控制精度、实现烧结自动化的目的。为了解决以上温度控制方法中存在的问题,本论文提出一种基于虚拟仪器LabVIEW的温度控制系统,本控制系统具有简单易懂的控制界面,能够实时显示温度的变化曲线,容易修改控制算法控制精度高等特点,很容易适应各种温度控制系统。1.2论文研究的主要容本文以电阻炉为研究对象,针对电阻炉的温度,在比较、研究不同控制策略的基础上,主要对虚拟仪器在电阻炉温度控制中的应用进行了研究。利用虚拟仪器的巨大优越性,改善电阻炉温度的控制品质,提高控制效果。本文主要进行了以下几方面的工作:(1)论述了电阻炉温度控制系统的课题目的、意义,温度控制系统系统的国外发展概况与本论文
23、的主要容并对电阻炉温度控制特点进行了简要分析。(2)详细介绍了虚拟仪器技术与本论文中用到的智能控制方法。(3)电阻炉温度控制系统的设计思路与方案,对系统软件开发平台进行选择。(4)介绍电阻炉温度控制系统硬件组成,晶闸管技术与建立控制对象数学模型。(5)将各种PID控制策略针对阶跃信号进行仿真,分析、比较不同控制策略对电阻炉温度进行控制的效果,总结各种控制策略的优、缺点。(6)电阻炉温度控制系统软件整体设计方案,与各个子模块设计过程。(7)系统运行检验,并对所做工作进行了总结,对未来的研究作了展望。1.3文研究的重点和难点电阻炉具有高度非线性、大时滞、大惯性、时变性等特点,应用传统的PID控制虽
24、然结构简单、容易实现,却依赖于被控对象精确的数学模型且无法保证控制精度。模糊控制虽然能够适用于无法精确建模的物理对象,但要获得好的控制效果需要有系统的先验知识和完整合理的模糊规则,这导致其应用受到了很大局限。基于本次设计的局限性,该论文使用虚拟仪器设计用户界面和数据采集功能,实现对电阻炉温度的实时控制并取得良好的控制效果,这是电阻炉温度控制领域的难题,也是本文研究的重点。第二章 虚拟仪器与应用简介虚拟仪器产生于20世纪80年代,它是由计算机技术、现代测试技术和微电子技术高速发展而孕育的一项革命性技术,它把标准化总线、网络化与软件化作为自己的发展目标和方向,极其符合未来测试与仪器技术发展的要求。
25、与传统仪器相比,虚拟仪器充分利用计算机系统资源,通过计算机总线与外围通用硬件设备构筑了功能更丰富、处理速度更快、测量效率更高、可扩展性更好的仪器系统。近年来,虚拟仪器在测试、控制等领域得到了越来越广泛的应用,成为重点的仪器技术研究对象。2.1虚拟仪器的概念所谓虚拟仪器(VirtualInstent,简称VI),就是用户在通用计算机平台上,根据需求定义和设计仪器的测试功能,使得使用者在操作计算机时,就像是在操作他自己设计的测试仪器一样。虚拟仪器概念的出现,打破了传统仪器由厂家定义功能的工作模式,使得用户可以根据自己的要求,设计自己的仪器系统。在测试系统和仪器设计中尽量用软件代替硬件,充分利用计算
26、机技术来实现和扩展传统测试系统与仪器的功能。“软件就是仪器”是虚拟仪器概念最简单,也是最本质的表述。虚拟仪器是现代计算机软件技术、通信技术和测量技术相结合的产物,它使得人类的测试技术进入了一个新的发展纪元。虚拟仪器将计算机资源和仪器硬件、DSP技术结合,在系统共享软硬件资源,既有普通仪器的功能,又有一般仪器没有的特殊功能。利用虚拟仪器技术建立的测试系统提高了测量精度、测量速度,减少了开关、电缆,系统易扩充、易修改,使得测试系统体积小、灵活方便、成本低、效率高,成为现代测试系统发展的主流。虚拟仪器没有常规仪器的控制面板,而是利用计算机强大的图形环境,在计算机屏幕上建立图形化的虚拟面板来代替常规的
27、仪器控制面板。软面板上具有与实际仪器相似的旋钮、开关、指示灯与其它控制部件。用户通过鼠标或键盘操作虚拟面板,检验仪器的通信和操作。在系统集成后,对被测对象进行数据采集、分析、存储、显示,组建自己所需要的仪器。用户不必要编写测试文本程序,即可进行测试、测量,实现了测试和自动化、智能化,体现了“软件就是仪器”。如今,随着电测技术以与网络技术的发展,仪器技术必将沿着虚拟仪器方向发展。2.2虚拟仪器的特点虚拟仪器是计算机技术介入仪器领域所形成的一种新型的、富有生命力的仪器种类。在虚拟仪器中计算机处于核心地位,计算机软件技术和测试系统更紧密的结合,形成了一个有机整体,使得仪器的结构概念和设计观点等都发生
28、了突破性的变化。从构成和功能上来说,虚拟仪器就是利用现有的计算机,配上相应的硬件和专业软件,形成既有普通仪器的基本功能,又有一般仪器所没有的特殊功能的高档低价的新型的仪器;从形式上来说,虚拟仪器面板(即软面板),可以有效地提高仪器的使用效率。虚拟仪器特点可以归结为以下四个方面:(l)丰富和增强了传统仪器的功能。虚拟仪器将信号分析,显示,存储,打印和其他管理集由计算机来处理,充分利用了计算机的强大的数据处理,传输和发布能力,使得组建系统变得更加灵活、简单。(2)突出“软件就是仪器的概念。传统仪器的某些硬件在虚拟仪器中被软件代替,由于减少了许多随时间可能漂移、需要定期校准的分立式模拟硬件,加上标准
29、总线的使用,使仪器的测量精度、测量速度和可重复性都大大提高。(3)仪器由用户自己定义。虚拟仪器通过提供给用户组建自己仪器的可重用源代码库,可以很方便地修改仪器功能和面板,设计仪器的通信、定时和触发功能,实现与外设,网络与其他应用的连接,给用户一个充分发挥自己能力和想象力的空间。(4)开放的工业标准。虚拟仪器硬件和软件都制定了开放的工业标准,因此用户可以将仪器的设计、使用和管理统一到虚拟仪器标准,使资源的可重复利用率提高,功能易于扩展,管理规,生产,维护和开发费用降低。(5)便于构成复杂的测试系统,经济性好。虚拟仪器既可以作为测试仪器独立使用,又可以通过告诉计算机网络构成复杂的分布式测试系统,进
30、行远程测试、监控与故障诊断。此外,用基于软件体系结构的虚拟仪器代替基于硬件体系结构的传统仪器,还可以大大节约仪器的购买和维护费用。2.3虚拟仪器的组成虚拟仪器(VI)一般由通用计算机(PC机)、数据采集卡与软件系统组成。它充分利用PC机丰富的软硬件资源快速建立数据采集应用系统,通过数据采集卡从外界采集各种信号,对信号进行实时存储、实时显示与离线分析。这是一个由通用仪器硬件平台(由计算机和数据采集卡组成,简称硬件平台)和应用软件组成的复杂系统。(l)通用仪器硬件平台。虚拟仪器的硬件平台由一台通用计算机和I/O接口设备构成。其中,I/O接口设备完成被测信号的采集、放大、模/数转换等。可以根据实际的
31、情况采用不同的I/O接口硬件设备,如数据采集卡(DAQ)、GPIB总线仪器、VXI总线仪器、PXI总线仪器、串口仪器等。虚拟仪器的构成方式主要有五类。PC一DAQ系统:是以数据采集板、信号调理电路和计算机为仪器硬件平台组成的插卡式虚拟仪器系统。采用PCI计算机本身的总线,故将数采卡(DAQ)插入计算机的空槽中即可。GPIB系统了:以GPIB标准总线仪器与计算机为仪器硬件平台组成的虚拟仪器测试系统。VXI系统:以VXI标准总线仪器模块与计算机为仪器硬件平台组成的虚拟仪器测试系统。PXI系统:以PXI标准总线仪器模块与计算机为仪器硬件平台组成的虚拟仪器测试系统。串口系统:以Serial标准总线仪器
32、与计算机为仪器硬件平台组成的虚拟仪器测试系统。无论上述那种Vl系统,都是通过应用软件将仪器硬件与通用计算机相结合。其中,PC-DAQ系统是构成Vl的最基本的方式,也是最廉价的方式。(2)虚拟仪器的软件开发平台。虚拟仪器的核心是软件,软件开发平台的水平在很大程度上代表了虚拟仪器的水平。虚拟仪器软件由两大部分构成:应用程序和1/0接口仪器驱动程序。随着计算机技术和软件技术的飞速发展,各种专用仪器开发系统的功能也越来越强大和完善。以美国Nl公司的软件产品LabVIEW和LabWindows/CVI为代表的虚拟仪器专用开发平台是当前流行的集成开发工具。这些软件开发平台提供了强大的仪器软面板设计工具和各
33、种数据处理工具,再加上虚拟仪器硬件厂商提供的各种硬件驱动程序模块,大简化了虚拟仪器设计工作。随着软件技术的迅速发展,软件开发的模块化、复用化,对各种硬件仪器的驱动软件模块化、标准化,将使虚拟仪器软件开发变得更加方便。2.4虚拟仪器的开发平台LabVIEWLabVIEW是一种图形化的编程语言,它是由美国NI公司推出的虚拟仪器开发平台,也是目前应用最广、发展最快、功能最强的图形化软件集成开发环境。它把复杂的语言编程简化成用图形编程的方式,为编程的调试提供了简单方便的环境,同时集成了大量的生成图形界面的模块,丰富的数值分析与处理功能。LabVIEW是一个带有扩展功能库和子程序库的通用程序设计系统。其
34、开发环境下提供的应用程序有180多种,除了具备其它语言所提供的常规函数功能和上述的生成图形界面的大量模板外,部还包括许多特殊的功能库函数和开发工具库以与多种设备驱动功能。LabVIEW作为一种强大的虚拟仪器开发平台,被视为一个标准的数据采集和仪器控制软件。它集成了GPIB,VXI,PXI,RS-232和RS-485协议以与数据采集卡通讯的全部功能,还置了便于应用TCP/IP,ActiveX等软件标准的库函数。LabVIEW的程序包括前面板(FrontPanel)、流程图(BlockDiagram)以与图标/连接器三部分。LabVIEW简化了虚拟仪器系统的开发过程,缩短了系统的开发和调试周期,它
35、让用户从烦琐的计算机代码编写中解放出来,把大部分精力投入系统设计和分析当中,而不再拘泥于程序细节。LabVIEW是一个面向最终用户的工具,它可以增强用户构建自己的科学和工程系统的能力,提供了实现仪器编程和数据采集系统的便捷途径,使用它进行原理研究、设计、测试并实现仪器系统时,可以大大提高工作效率,其主要特点可归纳为如下几点:(l)简单的方案。即使没有多少编程经验,仍可以方便的使用LabVIEW,因为它使用“所见即所得”的可视化技术建立人机界面,提供大量的仪器面板中的控制对象。此外,LabVIEW按其易用的方式将复杂的任务包装起来,从而使复杂任务得到简化。先进的ActiveX技术融合了简单的拖动
36、编程方法,仪器控制和数据采集在开发向导的引导下变得十分简单,使用户十分容易地开发自己的仪器,并将其立即投入使用。(2)灵活的仪器将LabVIEW与一般的数据采集与仪器加以组合,可以设计出灵活的虚拟仪器,并可以随时将仪器系统移植到最适用的平台上使用。(3)方便的程序调试具有一些专用程序开发箱,可以在源代码中设置断点,单步执行源代码,高亮显示,连线上设置探针,动态执行程序,观察程序运行过程中数据流的变化。(4)完整的开发环境LabVIEW软件包中包含了功能强大的数据采集、分析和表达的能力,使用户可以在该平台上实现一个完整的解决方案。另外,它还有一个多线程和用于最大限度提高系统性能的优化图形编辑器。
37、这样,不仅简化了开发过程,而且可生成按编译速度执行的可复用代码。此外,LabVIEW还可以生成在没有LabviEw编程环境的目标机器上运行可执行的代码。(5)快速开发的LabVIEW为用户提供了实现仪器编程和数据采集系统的便捷途径。通过仪器驱动程序可以与大多数仪器进行通讯。用户不必学习各种仪器的低级编程协议,从而简化了仪器的控制,缩短了开发时间,提高了生产效率。(6)开放的平台提供的DLL接口和CIN接口节点,使用户能在它的平台上使用其它应用软件编译的模块,能调用C语言程序、Matlab程序与已存在的DLL库函数,是一个开放的平台。2.5 LabVIEW的程序构成LabVIEW的程序由前面板(
38、frontpanel)和流程图(bloekdiagram)两部分组成,整个程序是基于多线程的设计,前面板和流程图各占用一个线程。前面板是LabVIEW程序的图形用户接口,此接口集成了用户输入,并显示程序的输出,相当于传统仪器的面板。前面板包括旋钮、按钮、图形和其它的控制(controls)与显示对象(indieators)。流程图包括虚拟仪器程序的图形化源代码。在流程图中对VI进行编程,以控制和操作定义在前面板上的输入和输出功能。流程图包括置于LabVIEW VI库中的函数(functions)和结构(stoctures),还包括与前面板上的控制对象、显示对象对应的连线端子(terminals
39、)。2.6虚拟仪器与传统仪器的比较虚拟仪器与传统仪器相比,最直观的区别就是与用户进行交互的面板。传统仪器的面板只有一个,其上布置着种类繁多的显示与操作元件,容易导致许多识别与操作错误。虚拟仪器与之不同,它可以通过在几个分面板上的操作来实现比较复杂的功能。这样,在每个分面板上就可以实现功能操作的单纯化与面板布置的简洁化,从而提高操作的准确性和便捷性。同时,虚拟仪器面板上的显示元件和操作元件的种类与形式不受“标准件”和“加工工艺”的限制,他们是由编程来实现的,设计者可以根据用户的认知要求和操作要求,设计仪器面板。表2.1 虚拟仪器与传统仪器比较虚拟仪器传统仪器开发和维护费用低开发和维护开销大技术更
40、新时间短(1-2年)技术更新周期长(5-10年)软件是关键,系统性能升级方便,通过网络下载升级程序即可硬件是关键,升级成本高价格低廉,仪器资源可重复利用率高价格较昂贵,仪器资源重复利用率低用户可自定义仪器功能,并且可以根据实际情况更改只有厂商能定义仪器功能,一旦定义好以后就难以更改可通过网络连接其他仪器,实现资源共享或协同工作功能一般比较单一,只能连接有限的独立设备开放性好、比较灵活,可与计算机技术保持步发展开放性差,利用新技术为自己服务的速率低从表可以看出与传统仪器相比,虚拟仪器具有绝对的优势。决定虚拟仪器具有传统仪器不可能具有的特点的根本原因在于“虚拟仪器的关键是软件”。虚拟仪器在性价比、
41、灵活性以与用户使用方便方面,具有传统仪器不可比拟的优势。以一台高性能仪器为例,用户可以装配一台装有基于硬件和软件部分的个人计算机系统,为专门的应用软件设计虚拟仪器。硬件部分可以是插入式主板、外围仪器,或者两者的结合。在任何一种情况下,软件界面可按照用户的需求进行设计,以使用户操作方便和快捷。用户可以通过虚拟仪器来简化一台复杂的独立仪器的操作,虚拟仪器也可以只作为集中控制仪器的一个部分,只实现其中的一部分功能,其使用是相当灵活的。如今,许多插卡式的数据采集主板同时还设置了技术先进的直接存储器存取时以与兼容于多种主板的触发功能,增强了主板之间的同步性和信号结合性。这些技术上的进步,再加上操作系统功
42、能和计算机体系结构方面的发展,己经使得个人电脑具有并行处理的能力,从而可以成为更加先进的仪器和数据采集应用程序的平台。然而,技术的进步是以复杂性的提高为代价的,比起使用具有类似功能的一台独立仪器,用户必须具备更多有关硬件方面的知识。虚拟仪器软件对于将这些技术尖端的硬件组成变成实际可用的仪器系统是必不可缺的。2.7虚拟仪器的应用虚拟仪器技术的优势在于可由用户自己定义仪器系统功能,且定义的功能也比较灵活,也很容易构建,所以应用面极为广泛。尤其在科研、开发、测量、检测、计量、测控等领域更是不可多得的好工具。虚拟仪器技术先进,十分符合国际上流行的“硬件软件化”的发展趋势,因而常被称作“软件仪器”。它功
43、能强大,可实现示波器、逻辑分析仪、频谱仪、信号校正器等多种普通仪器全部功能,配以专用探头和软件还可以检测特定系统的参数,如汽车发动机参数、汽油标号、炉窑温度、血液脉搏波、心电参数等多种数据;它操作灵活,完全图形化界面,风格简约,符合传统设备的使用习惯,用户不经培训即可迅速掌握操作规程;它集成方便不但可以和高速数据采集设备构成自动测量系统,而且可以和控制设备构成自动控制系统。虚拟仪器技术作为计算机技术与仪器技术相结合的创新技术,应用前景十分广泛。从总体上而言,虚拟仪器是测量测试领域的一个创新概念,改变了人们对仪器的传统观念,适应了现代测试技术的网络化、智能化发展趋势。虚拟仪器技术应用方式多种多样
44、,下面主要针对虚拟仪器技术在工业自动化,仪器制造和实验室方面的应用前景和效益进行分析。工业自动化。我国工业基础比较落后,工业自动化程度远不能满足市场经济快速发展的要求。制约工业自动化水平提高的一个关键因素就是企业缺乏开发自动化控制和管理软件的专业人才。许多生产第一线的工程师熟悉设备与工艺流程,但是不具备程序员的专门编程能力,往往控制系统软件使交给研究人员或大学程序员编写的软件设计与使用脱节。传统的软件设计方法使得实际工程人员很难掌握和修改专业人员编写的软件,工作积极性和创造力受到影响,许多项目实际效果并不理想。虚拟仪器设计所采用的图形化编程语言,十分适合工程师应用,有利于提高企业自主开发和管理
45、项目的能力,降低工业自动化技术改造的成本。另一方面,采用虚拟仪器技术,根据实际工艺流程和控制要求,将分布在企业不同位置的各种测量仪表和控制装置连接成为一个网络系统,通过计算机实施集中控制和管理,可以改变采用传统单元仪表分散时工作成本高,维护困难,资源配置重复等缺点,提高工业自动化改造的经济效益,降低管理成本。仪器产业改造。仪器制造业是代表一个国家科技和工业发展水平的一个重要领域。是否具备各种先进和高性能仪器,对整个国家的科技开发能力,国防高科技水平和工业现代化水平都有直接或潜在的重要影响。由于工业基础比较落后,我国的仪器制造,尤其是高性能科学仪器的制造还远远不能满足国防和经济建设发展的需要。目
46、前,像数字示波仪,频谱分析仪和逻辑分析仪等中高档仪器还依赖于进口。即使像数字万用表,发生器等基础测量仪器,国产的与进口的产品在功能上,易用性方面仍存在差距。传统台式仪器制造水平不仅取决于设计,还依赖于工艺和加工水平,因此短期提高是有一定困难的。采用虚拟仪器技术,将过去的仪器中许多靠硬件来完成实现的功能用软件来代替,利用商品化的数据采集和PC技术,完全可以开发出各行各业急需的各种测量仪器,缩短我国与世界先进国家在仪器领域的差距。这是采用高新技术改造传统产业的一个大有可为的领域。实验室应用。电子仪器与测试实验室是高等工科院校必备的教学实验条件。为了提供一定的实验规模,保证每个学生得到实际动手能力的
47、训练,传统的教学实验室一般需要购置大量的基础测量仪器,如示波器,万用表,信号源,使得投资大、技术更新快、维护困难。利用虚拟仪器技术,我们可以设计出与实际仪器在原理、功能和操作等方面完全一样的全软件虚拟仪器。利用这些虚拟仪器,学生在计算机上就可以学习和掌握仪器原理,功能与操作,并通过仪器与仪器,仪器与电路的相互配合,完成实际测试过程,达到与用实际仪器教学一样的目的。这种思想对从根本上改变传统实验教学方法,降低实验室建设与管理成本,实现远程实验教学具有重要的参考价值。目前,NI提供了多种软硬件产品,应用遍布电子、机械、通信、汽车制造、生物、医药、化工、科研、教育等各个行业领域。从日本的Honda汽
48、车测试、澳洲的心脏起搏器设计/验证,到英国电信线路性能测试,全世界数以万计的工程师和科学家们都在使用NI的产品达到他们共同的目的更快、更好、更省钱。85%的全球500强制造型企业是NI虚拟仪器技术的用户。下面列举了LabVIEW与NI其它技术在虚拟仪器领域的一些应用例子,从中,可以体会到LabVIEW应用围之广,与它在虚拟仪器领域的重要地位:航空工业基于PXI总线的旋转试验台综合测试系统的设计与实现;工业控制基于LabVIEW和PXI平台的焊机自动测试系统;消费电子使用LabVIEW和FieldPoint构建洗碗机模糊控制开发测试平台;通信领域基于虚拟仪器技术的短波电台自动测试系统;材料工程基于分行理论的高效机器视觉检测系统;生物科技采用LabVIEW和SCXI信号调理系统实现昆虫足力测试实验;研究开发NI测控技术在水下声波测控中的应用;工业控制基于虚拟仪器技术的高速电池分解线数控系统建造;汽车工业燃料电池发动机智能测试平台;土木工程应用NI技术快速构建