立体几何解题技巧大全及其高考-类型题-老师专用.doc

上传人:小** 文档编号:2804493 上传时间:2020-05-07 格式:DOC 页数:26 大小:1.14MB
返回 下载 相关 举报
立体几何解题技巧大全及其高考-类型题-老师专用.doc_第1页
第1页 / 共26页
立体几何解题技巧大全及其高考-类型题-老师专用.doc_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《立体几何解题技巧大全及其高考-类型题-老师专用.doc》由会员分享,可在线阅读,更多相关《立体几何解题技巧大全及其高考-类型题-老师专用.doc(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、+立体几何解题技巧及高考类型题老师专用【命题分析】高考中立体几何命题特点:1.线面位置关系突出平行和垂直,将侧重于垂直关系2.空间“角”与“距离”的计算常在解答题中综合出现3.多面体及简单多面体的概念、性质多在选择题,填空题出现4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点此类题目分值一般在17-22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点分析】掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的

2、距离的概念.【高考考查的重难点】空间距离和角“六个距离”:1、两点间距离 ;2、点P到线l的距离 (Q是直线l上任意一点,u为过点P的直线l法向量);3、两异面直线的距离 (P、Q分别是两直线上任意两点,u为两直线公共法向量);4、点P到平面的距离 (Q是平面上任意一点,u为平面法向量);5、 直线与平面的距离(P为直线上的任意一点、Q为平面上任意一点,u为平面法向量);6、 平行平面间的距离 (P、Q分别是两平面上任意两点,u为两平面公共法向量 ); “三个角度”:1、异面直线角0,cos= ;【辨】直线倾斜角范围0,);2、线面角 0, ,sin= 或者解三角形;3、二面角 0,cos 或

3、者找垂直线,解三角形。不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,证是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。其中,利用空间向量求空间距离和角的套路与格式固定,是解决立体几何问题这套强有力的工具时,使得高考题具有很强的套路性。【例题解析】考点1 点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.典型例题1、(福建卷)如图,正三棱柱的所有棱长都为,为中点()求证:平面;()求二面角的大小;()求点到平面的距离考查目的:本小题

4、主要考查直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力 解:解法一:()取中点,连结为正三角形,正三棱柱中,平面平面,G平面连结,在正方形中,分别为的中点, , 在正方形中, 平面()设与交于点,在平面中,作于,连结,由()得平面, 为二面角的平面角在中,由等面积法可求得,又, 所以二面角的大小为()中,在正三棱柱中,到平面的距离为设点到平面的距离为由,得,点到平面的距离为解法二:()取中点,连结为正三角形,在正三棱柱中,平面平面,平面取中点,以为原点,的方向为轴的正方向建立空间直角坐标系,则,平面()设平面的法向量为x, ,令得为平面的一个

5、法向量由()知平面,为平面的法向量,二面角的大小为()由(),为平面法向量,点到平面的距离小结:本例()采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B点到平面的距离转化为容易求的点K到平面的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这种方法.考点2 异面直线的距离考查异目主面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离.典型例题2、 已知三棱锥,底面是边长为的正三角形,棱的长为2,且垂直于底面.分别为的中点,求CD与SE间的距离.思路启迪:由于异面直

6、线CD与SE的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离.解:如图所示,取BD的中点F,连结EF,SF,CF,为的中位线,面,到平面的距离即为两异面直线间的距离.又线面之间的距离可转化为线上一点C到平面的距离,设其为h,由题意知,,D、E、F分别是AB、BC、BD的中点,在Rt中,在Rt中,又由于,即,解得故CD与SE间的距离为.小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程.考点3 直线到平面的距离偶尔会再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化.典型例题3 如图,在棱长为2的正方体中,G是的中

7、点,求BD到平面的距离.思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法求解.解:解法一 平面,上任意一点到平面的距离皆为所求,以下求点O平面的距离,,平面,又平面平面,两个平面的交线是,作于H,则有平面,即OH是O点到平面的距离.在中,.又.即BD到平面的距离等于.解法二 平面,上任意一点到平面的距离皆为所求,以下求点B平面的距离.设点B到平面的距离为h,将它视为三棱锥的高,则 , 即BD到平面的距离等于.小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法

8、求出点面距离.考点4 异面直线所成的角【重难点】此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.(1)求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识(余弦定理、正弦定理、射线定理()求解,整个求解过程可概括为:一找二证三求。(2)求异面直线所成角的步骤:选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置斩点。求相交直线所成的角,通常是在相应的三角形中进行计算。因为异面直线所成的角的范围是090,所以在三角形中求的角为钝角时,应取它的补角作为异面直线所成的角。3、“补形法”是立体几何中一种常见的方法

9、,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。4、利用向量,设而不找,对于规则几何体中求异面直线所成的角也是常用的方法之一。方法总结:直接平移法、中位线平移、补形平移法、向量法典型例题 4、 长方体ABCDA1B1C1D1中,若AB=BC=3,AA1=4,求异面直线B1D与BC1所成角的大小。选题意图,通过该题,让学生进一步理解异面直线所成角的概念,熟练掌握异面直线所成角的求法。分析:构造三角形找中位线,然后利用中位线的性质,将异面直线所成的角转化为平面问题,解三角形求之。解法一:如图连结B1C交BC1于0,过0点作OEDB1,则BOE

10、为所求的异面直线DB1与BC1所成的角。连结EB,由已知有B1D=,BC1=5,BE=,BOE= BOE=解法二:如图,连DB、AC交于O点,过O点作OEDB1,过E点作EFC1B,则OEF或其补角就是两异面直线所成的角,过O点作OMDC,连结MF、OF。则OF=,OEF=,异面直线B1D与BC1所成的角为。解法三:如图,连结D1B交DB1于O,连结D1A,则四边形ABC1D1为平行四边形。在平行四边形ABC1D1中过点O作EFBC1交AB、D1C1于E、F,则DOF或其补角就是异面直线DB1与BC1所成的角。在ADF中DF=,DOF=,DOF=。解法四:如图,过B1点作BEBC1交CB的延长

11、线于E点。则DB1E就是异面直线DB1与BC1所成角,连结DE交AB于M,DE=2DM=3,DB1E= DB1E=。解法五:如图,在平面D1DBB1中过B点作BEDB1交D1B1的延长线于E,则C1BE就是异面直线DB1与BC1所成的角,连结C1E,在B1C1E中,C1B1E=135,C1E=3,C1BE=,C1BE=。分析:在已知图形外补作一个相同的几何体,以例于找出平行线。解法六:如图,以四边形ABCD为上底补接一个高为4的长方体ABCD-A2B2C2D2,连结D2B,则DB1D2B,C1BD2或其补角就是异面直线DB1与BC1所成的角,连C1D2,则C1D2C2为Rt,C1BD2=,异面

12、直线DB1与BC1所成的角是。解法七:如图,连结DB、DC1,设异面直线DB1与BC1所成的角为,而=()=+=,+,BB1DD1 ,=,=D1DB1D1DB1= ,=180DB1C1DB1C1= ,=DB1C1=7 =,解法八:如图,建立如图所示的空间直角坐标系,则B(3,3,0),B1(3,3,4),D(0,0,0),C1(3,0,4)。设和的夹角为,则=异面直线与所成的角为。总之,异面直线所成的角是立体几何中的重要概念,也是我们学习的第一个空间角,它的求法体现了立体几何将空间图形问题化归为平面图形问题的基本思想。 典型例题5、长方体ABCDA1B1C1D1中,AB=AA1=2cm,AD=

13、1cm,求异面直线A1C1与BD1所成的角。 解法1:平移法 设A1C1与B1D1交于O,取B1B中点E,连接OE,因为OE/D1B,所以C1OE或其补角就是异面直线A1C1与BD1所成的角C1OE中 ,所以异面直线所成的角为解法2:补形法 在长方体ABCDA1B1C1D1的面BC1上补上一个同样大小的长方体,将AC平移到BE,则D1BE或其补角就是异面直线A1C1与BD1所成的角,在BD1E中,BD1=3, 所以异面直线A1C1与BD1所成的角为 图2 解法3:利用公式 设OA是平面的一条斜线,OB是OA在内的射影,OC是平面内过O的任意一条直线,设OA与OC、OA与OB、OB与OC所成的角

14、分别是、1、2,则(注:在上述题设条件中,把平面内的OC换成平面内不经过O点的任意一条直线,则上述结论同样成立)D1B在平面ABCD内射影是BD,AC看作是底面ABCD内不经过B点的一条直线,BD与AC所成的角为AOD,D1B与BD所成角为D1BD,设D1B与AC所成角为,。 所以 所以异面直线A1C1与BD1所成的角为 解法4:向量几何法: 设为空间一组基向量 所以异面直线A1C1与BD1所成的角为 解法5:向量代数法: 以D为坐标原点,DC、DA、DD1分别为x、y、z轴,建立空间直角坐标系,则A(0,1,0)、C(2,0,0),B(2,1,0)、D1(0,0,2), 所以异面直线A1C1

15、与BD1所成的角为 解法6:利用公式 定理:四面体ABCD两相对棱AC、BD间的夹角必满足图6解:连结BC1、A1B在四面体中,异面直线A1C1与BD1所成的角是,易求得图7由定理得: 所以小结: 求异面直线所成的角常常先作出所成角的平面图形,作法有:平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,如解析一,或利用中位线,如解析二;补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线间的关系,如解析三.一般来说,平移法是最常用的,应作为求异面直线所成的角的首选方法.同时要特别注意异面直线所成的角的范围:.考点5 直线和平面所成的角此类题主要考查直线与平面所成

16、的角的作法、证明以及计算.典型例题6、(全国卷理)四棱锥中,底面为平行四边形,侧面底面已知,()证明;()求直线与平面所成角的大小考查目的:本小题主要考查直线与直线,直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力 解:解法一:()作,垂足为,连结,由侧面底面,得底面因为,所以,又,故为等腰直角三角形,由三垂线定理,得()由()知,依题设,故,由,得,的面积连结,得的面积设到平面的距离为,由于,得,解得设与平面所成角为,则所以,直线与平面所成的我为解法二:()作,垂足为,连结,由侧面底面,得平面因为,所以又,为等腰直角三角形,如图,以为坐标原点

17、,为轴正向,建立直角坐标系,所以()取中点,连结,取中点,连结,与平面内两条相交直线,垂直所以平面,与的夹角记为,与平面所成的角记为,则与互余,所以,直线与平面所成的角为小结:求直线与平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常用以下步骤:构造作出斜线与射影所成的角,证明论证作出的角为所求的角,计算常用解三角形的方法求角,结论点明直线和平面所成的角的值.考点6 二面角【重点】此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解.二面角是高考的热点从一条直线出发的两个半平面所成的图形叫做二面角,记作:二面

18、角l。以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。范围: 2、二面角出现的状态形式有哪些? 竖立式 横卧式2、二面角的类型及基本方法(1)四种常规几何作求法定义法 垂面法; 三垂线法; 射影面积法=S射影多边形/S多边形(2)向量法:设和分别为平面的法向量,二面角的大小为,向量 、的夹角为,如图: 结论:设和分别为平面的法向量,二面角的大小为,向量 、的夹角为,则有或 结论:一般地,若设分别是平面的法向量,则平面与平面所成的二面角的计算公式是: 或 ,其中锐角、钝角根据图形确定。1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂

19、线,这两条射线所成的角就是二面角的平面角。2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。4、投影法:利用s投影面=s被投影面这个公式对于斜面三角形,任意多边形都成立,是求二面角的好方法。尤其对无棱问题E5异面直线距离法:EF2=m2+n2+d22mn典型例题7、若p是所在平面外一点,而和都是边长为2的正三角形,PA=,求二面角P-BC-A的大小。分析:由于这两个三角形是全等的三角形,故采

20、用定义法解:取BC的中点E,连接AE、PEAC=AB,PB=PCAE BC,PE BC为二面角P-BC-A的平面角在中AE=PE=,PA=900二面角P-BC-A的平面角为900。典型例题8、已知是正三角形,平面ABC且PA=AB=a,求二面角A-PC-B的大小。 思维二面角的大小是由二面角的平面角来度量的,本题可利用三垂线定理(逆)来作平面角,还可以用射影面积公式或异面直线上两点间距离公式求二面角的平面角。解1:(三垂线定理法)取AC的中点E,连接BE,过E做EFPC,连接BF 平面ABC,PA平面PAC平面PAC平面ABC, 平面PAC平面ABC=ACBE平面PAC由三垂线定理知BFPC为

21、二面角A-PC-B的平面角设PA=1,E为AC的中点,BE=,EF=tan=arctan解2:(三垂线定理法)取BC的中点E,连接AE,PE过A做AFPE, FMPC,连接FMMAB=AC,PB=PCAEBC,PEBCBC平面PAE,BC平面PBC平面PAE平面PBC, 平面PAE平面PBC=PE由三垂线定理知AMPC为二面角A-PC-B的平面角设PA=1,AM=,AF=Esin=argsin解3:(投影法)过B作BEAC于E,连结PE 平面ABC,PA平面PAC图3平面PAC平面ABC, 平面PAC平面ABC=ACBE平面PAC是在平面PAC上的射影设PA=1,则PB=PC=,AB=1D,由

22、射影面积公式得,,解4:(异面直线距离法)过A作ADPC,BEPC交PC分别于D、E设PA=1,则AD=,PB=PC=图4BE=,CE=,DE=由异面直线两点间距离公式得AB2=AD2+BE2+DE2-2ADBE,=点评本题给出了求平面角的几种方法,应很好掌握。典型例题9、二面角的大小为,A是它内部的一点,AB,AC,B、C为垂足。(1) 求证:平面ABC,平面ABC(2) 当AB=4cm,AC=6cm时求BC的长及A到EF的距离。分析:本题采用作棱的垂面法找二面角的平面角解:(1)设过 ABC的平面交平面于BD,交平面于CDAB,AB平面ABC平面ABC,同理平面ABCD(2)ABABEF同

23、理ACEFEF平面ABDCBDEF, CD EF=BC=cm有正弦定理得点A到EF的距离为:d=cm过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法.以锥体为载体,对求角的问题进行研究典型例题10、如图,在底面是一直角梯形的四棱锥S-ABCD中, ADBC,ABC=90,SA平面AC,SA=AB=BC=1,AD= .求面SCD与面SAB所成的角的大小。解法1:可用射影面积法来求,这里只要求出SSCD与SSAB即可,故所求的二面角应满足= = 。点评:(1)若利用射影面积法求二面角的大小,作为解答题,高考中是要扣分的,因为它不是定理.

24、(2)由学生讨论解决,教师根据学生的解答情况进行引导、明确学生的解答。解法2:(三垂线定理法)解:延长CD、BA交于点E,连结SE,SE即平面CSD与平面BSA的交线.又DA平面SAB,过A点作SE的垂线交于F.如图.ADBC且ADBC ADEBCE EAABSA又SAAE SAE为等腰直角三角形,F为中点, 又DA平面SAE,AFSE由三垂线定理得DFSEDFA为二面角的平面角,tanDFA即所求二面角的正切值.评注:常规法求解步骤:一作:作出或找出相应空间角;二证:通过简单的判断或推理得到相应角;三求:通过计算求出相应的角。点评:是利用三垂线的定理及其逆定理来证明线线垂直,来找到二面角的平

25、面角的方法。这种方法关键是找垂直于二面角的面的垂线。此方法是属于较常用的。总之,在运用三垂线找平面角时,找垂线注意应用已知的条件和有关垂直的判定和性质定理,按三垂线的条件,一垂线垂直二面角的一个面,还有垂直于棱的一条垂线。且两垂线相交,交点在二面角的面内。解法3:(向量法)解:如图,建立空间直角坐标系,则A(0,0,0),B(0,1,0),C(-1,1,0),D(0,0),S(0,0,1),易知平面SAB的法向量为=(0,0);设平面SDC的法向量为=(x,y,z),而=(-1,0),=(0, 1),面SDC,n1.得令得:。即=(1,2,1)面SAB与面SCD所成角的二面角为锐角,=arccos.故面SCD与面SBA所成的角大小为arccos.点评:通过此例可以看出:求二面角大小(空间面面角等于二面角或其补角)的常规方法是构造三角形求解,其关键又是作出二面角的平面角,往往很不简单。利用建立空间直角坐标系,避开了“作、证”两个基本步骤,通过求两个平面法向量的夹角来达到解决问题的目的,解题过程实现了程序化,是一种有效方法。搭建平台,自主交流,数形结合,扫清了学生的思维障碍,更好地突破了教学的重难点,体验数学的简约美,一题多解是训练学生思维的有效形式。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁