《2022年高二数学函数的极值与导数综合测试题.docx》由会员分享,可在线阅读,更多相关《2022年高二数学函数的极值与导数综合测试题.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选学习资料 - - - - - - - - - 名师精编 欢迎下载选修 2-2 1.3.2 函数的极值与导数一、挑选题1已知函数fx在点 x0处连续,以下命题中,正确选项 A导数为零的点肯定是极值点B假如在点 x0邻近的左侧 fx0,右侧 fx0,右侧 fx0,那么 fx0是极大值D假如在点 x0邻近的左侧 fx0,那么 fx0是极大值答案 C 解析 导数为 0 的点不肯定是极值点,例如 fxx 3,fx3x 2,f00,但 x0不是 fx的极值点,故 A 错;由极值的定义可知 C 正确,故应选 C. 2函数 y 13xx 3 有 A微小值 2,极大值 2 B微小值 2,极大值 3 C微小值
2、 1,极大值 1 D微小值 1,极大值 3 名师归纳总结 答案 D 第 1 页,共 8 页解析 y33x 231 x1 x 令 y0,解得 x1 1,x21 当 x1 时, y0,函数 y13xx 3 是减函数,当 1x0,函数 y13x x 3 是增函数,当 x1 时, y0,得 x2 或 x0,令 fx0,得 0x1 时, y0,当 x0,函数无极值,故应选D. 9已知函数fxx 3px2 qx 的图象与 x 轴切于 1,0点,就函数A极大值为4 27,微小值为0 B极大值为0,微小值为427C极大值为0,微小值为427D极大值为4 27,微小值为0 答案 A 解析 由题意得, f10,p
3、q 1- - - - - - -精选学习资料 - - - - - - - - - f10,2pq3名师精编欢迎下载由 得 p2,q 1. fxx3 2x2x,fx3x24x 1 3x1x1,令 fx0,得 x1 3或 x1,极大值 f 3 4 27,微小值 f10. 10以下函数中,x0 是极值点的是 Ay x 3B ycos 2xCytanxx D y1 x答案 B 1cos2x解析 ycos 2x2, y sin2x,x0 是 y0 的根且在 x0 邻近, y左正右负,x0 是函数的极大值点二、填空题名师归纳总结 11函数 yx2x 21的极大值为 _,微小值为 _第 4 页,共 8 页答
4、案 1 1 解析 y21x1x x 21 2,令 y0 得 1x1,令 y1 或 x0,得 x2或 x2,令 y0,得2x2,当 x2时取极大值a42,当 x2时取微小值a4 2. - - - - - - -精选学习资料 - - - - - - - - - 13已知函数yx3ax名师精编欢迎下载x3 处有微小值,就a2bx27 在 x 1 处有极大值,在_,b _. 答案 3 9 解析 y3x 22axb,方程 y0 有根 1 及 3,由韦达定理应有14已知函数 fx x 33x 的图象与直线 ya 有相异三个公共点,就 a 的取值范畴是_答案 2,2 解析 令 fx3x 230 得 x1,可
5、得极大值为 f 12,微小值为 f1 2,yfx的大致图象如图观看图象得 2a0,且方程个根分别为1,4. 1当 a3 且曲线 yfx过原点时,求fx的解析式;2如 fx在, 内无极值点,求a 的取值范畴解析 此题考查了函数与导函数的综合应用由 fxa 3x3bx2cxd 得 fxax22bxcfx 9xax22bxc9x0 的两根为 1,4. - - - - - - -精选学习资料 - - - - - - - - - 1当 a3 时,由 * 式得名师精编欢迎下载,解得 b 3,c12. 又曲线 yfx过原点, d0. ax故 fxx 33x212x. x2由于 a0,所以 “ fxa 3x3bx2cxd 在 ,内无极值点 ” 等价于 “ f 22bxc 0 在 , 内恒成立 ”由* 式得 2b95a,c 4a. 又 2b 24ac9a1a9 解 得 a1,9 ,即 a 的取值范畴 1,9 名师归纳总结 - - - - - - -第 8 页,共 8 页